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Abstract. In this article, we investigate the degree structures of various func-

tions spaces and hyperspaces. One of our goals is to gain a topological under-
standing of higher-type computability using negative information, and to this
end, we explore the degree structures of function spaces whose ground types
are endowed with cofinite topology or its relatives.
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1. Introduction

1.1. Summary. A central object of study in computability theory is the degrees of
non-computability (e.g. the Turing degrees and the enumeration degrees). Recently,
a unified topological treatment of these notions of degrees has been proposed in
[23, 22]; for example, the Turing degrees are the degrees of non-computability of
points in Cantor space 2ω (or Baire space ωω), the enumeration degrees are the
degrees of non-computability of points in Scott domain P(ω) (or equivalently the
ω-power Sω of Sierpiński space), the continuous degrees are the degrees of points
in Hilbert cube [0, 1]ω, the cototal degrees are the degrees of points in maximal
antichain space, and so on. In this way, several notions of degrees are unified as the
degrees of non-computability of points in topological spaces [22]; see also [21, 23, 17].
Based on this unification theory, this article analyzes the degree structures of various
(higher-type) function spaces.

In modern theory, the notion of admissibly represented space [37] is widely used
as a class of topological spaces in which the notion of computability makes sense.
The category of admissibly represented spaces is cartesian closed, which implies
that one can discuss the degrees of non-computability of higher-type functions. In
the classical theory of higher-type computability [33, 25], the higher-type function
spaces with ω (or R or similar) as a ground type have been studied as a central
subject, but it seems that, for example, higher-type function spaces with non-
Hausdorff or non-sober ground types have rarely been studied.

Let us explain why it is worth considering non-Hausdorff/non-sober ground
types. The key notion is computability using negative data. Here, an element
of a set A and its complement is considered as positive and negative data about A,
respectively. For example, the idea of computational learning using negative data
has been around for a long time (see e.g. [18]), and in recent years, computable
enumeration using only negative data has also been found to play an important
role in the computability-theoretic study of symbolic dynamics, word problems of
groups, and so on [19, 28, 1]. Topologically, enumerating a negative data of a set
can be interpreted as computing that set under the cofinite topology (or its ana-
logue), which is a typical non-Hausdorff T1-space. Moreover, this kind of space is
not sober, so it has not been a subject of much attention in most fields.

One abstract formulation of higher-type computability using negative data is to
consider the de Groot dual (for example, the de Groot dual of the discrete topology
on ω is the cofinite topology), and it seems that the computability-theoretic study
of the de Groot dual is worth studying also in the context of synthetic topology;
see [24]. We discuss this formulation, but also discuss other notions as well.

Our article focuses largely on the analysis of computability-theoretic degree
structures on higher-type function spaces based on negative information (for exam-
ple, higher-type function spaces with a space endowed with the cofinite topology
as a ground type), which have been overlooked by classical theory.

In Section 2, we analyze the degree structures of hyperspaces O(X) of open
sets in various spaces X; that is, function spaces whose codomain is the Sierpiński
space. In Section 3, we analyze the degree structures of function spaces C(X,Y )
with more general codomains. In Section 4, we analyze the degrees of Π0

1 singletons
and the degree structures of the spaces of co-singletons (i.e., the de Groot duals)
in function spaces. In Section 5, we perform a technical analysis on the complexity
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of higher-order function spaces. In Section 6, we introduce and analyze a notion of
reducibility for points in function spaces by linear realizability.

1.2. Preliminaries. For the basics of computability theory, we refer the reader
to Cooper [7] and Soare [42]. For higher order computability, see [34, 25]. For
computable topology, see [4]. The notions we mainly use are also summarized in
our previous article [22].

1.2.1. Enumeration and Medvedev reducibility. We review the definition of enumer-
ation reducibility (see also Odifreddi [35, Chapter XIV], Cooper [6] & [7, Chapter
11]). Let (De)e∈ω be a computable enumeration of all finite subsets of ω. Given
A,B ⊆ ω, we say that A is enumeration reducible to B (written A ≤e B) if there
is a c.e. set Φ such that

n ∈ A ⇐⇒ (∃e) [⟨n, e⟩ ∈ Φ and De ⊆ B].

The Φ in the above definition is called an enumeration operator. An enumeration
operator induces a computable function on ωω, and indeed, A ≤e B iff there is a
computable function f : ωω → ωω such that given an enumeration p of A, f(p)
returns an enumeration of B, where we say that p ∈ ωω is an enumeration of A if
A = {p(n) − 1 : p(n) > 0} (p(n) = 0 indicates that we enumerate nothing at the
n-th step).

Each equivalence class under the e-equivalence ≡e:= (≤e ∩ ≥e) is called an
enumeration degree or simply e-degree. The e-degree of a set A ⊆ ω is written as
dege(A). The e-degree structure forms an upper semilattice, where the join is given
by the disjoint union A⊕B = {2n : n ∈ A}∪ {2n+1 : n ∈ B}. We use the symbol
De to denote the set of all e-degrees.

For P,Q ⊆ ωω, we say that P is Medvedev reducible to Q (written P ≤M Q,
[29]) if there is a partial computable function Ψ :⊆ ωω → ωω such that for any
q ∈ Q, Ψ(q) ∈ P . There is a natural embedding of the enumeration degrees into
the Medvedev degrees of the Baire space, by taking a set A to the class of all
enumerations of A.

1.2.2. Represented spaces. The central objects of study in modern computability
theory are the represented spaces, which allow us to make sense of computability
for most space of interest in everyday mathematics.

Definition 1.1. A represented space is a set X together with a partial surjection
δ :⊆ ωω → X. We often write X for a represented space.

We say that p ∈ ωω is a δ-name of x if x = δ(p). We use Nameδ(x) to denote
the set of all δ-names of x, or just write Name(x), if the space is clear from the
context. Hereafter, by a point, we mean a pair of a point x ∈ X and the underlying
represented space X = (X, δ), denoted by x : X or x : δ or simply x.

For points x, y, we write x ≤T y iff Name(x) is Medvedev reducible to Name(y).
Then the degree deg(x) of a point x is defined as the Medvedev degree of Name(x)
[23, 22]. In particular, a point is computable iff it has a computable name. The
degree of a point in a represented spaces X is called an X-degree.

A partial function F :⊆ ωω → ωω is called a realizer of a partial function
f :⊆ X → Y, if δY(F (p)) = f(δX (p)) for any p ∈ dom(fδX ); that is, given a name
p of x, F (p) returns a name of f(x). We then say that f is computable (respectively
continuous), if f has a computable (respectively continuous) realizer.
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1.2.3. Second-countable spaces. A represented cb space is a pair (X , β) of a second-
countable space X and an enumeration β = (βe)e∈ω of a countable open subbasis
of X . Here, “cb” stands for “countably based”. If a represented cb space is T0,
then it is also called a represented cb0 space. The enumeration β is called a cb
representation of X .

One of the key observations is that specifying a cb representation β of a second-
countable T0 space X is the same thing as specifying an embedding of X into
the power set Pω of ω endowed with the Scott topology (that is, basic open sets
are {X ⊆ ω : D ⊆ X} where D ranges over finite subsets of ω). Hence, a cb0
representation β (and the induced embedding) determines how a point x ∈ X is
identified with a subset of the natural numbers. This observation entails the known
fact that the Scott domain Pω is a universal second-countable T0 space, that is,
every second-countable T0 space embeds into Pω. We describe how an embedding
: X ↪→ Pω is induced from a cb representation β. One can identify a point x in a
represented cb0 space (X , β) with the coded neighborhood filter

Nbaseβ(x) = {e ∈ ω : x ∈ βe}.

It is not hard to see that Nbaseβ : X ↪→ Pω is a topological embedding. An
enumeration of Nbaseβ(x) is called a β-name of x, that is, for a p : ω → ω,

p is a β-name of x ⇐⇒ rng(p) = Nbaseβ(x),

where one can assume that the zeroth term β0 is the whole space X without loss
of generality. This allows us to perform the action of not enumerating anything. If
β is clear from the context, we also use the symbol Nbase(x) instead of Nbaseβ(x).

Clearly, a cb-representation β always induces a representation δβ (in the sense
of Definition 1.1) defined by δβ(p) = x iff p is a β-name of x (i.e., p enumerates
Nbaseβ(x)). This entails that NbaseX (x) is c.e. iff x : X is computable. In situ-
ations where no confusion is expected, we may speak of a cb representation and
its induced representation interchangeably. We can also express computability of
partial functions between represented cb spaces equivalently as a special case of
computability on represented spaces, or in the language of enumeration reducibil-
ity: Saying that f :⊆ X → Y is computable is equivalent to saying that there is a
single enumeration operator Ψ such that

(∀x ∈ dom(f)) [Nbase(f(x)) ≤e Nbase(x) via Ψ].

To be more explicit:

f(x) ∈ βYn ⇐⇒ (∃e) [⟨n, e⟩ ∈ Ψ and (∀i ∈ De) x ∈ βXi ](1)

for any x ∈ dom(f), where βX and βY are fixed countable bases of X and Y,
respectively.

1.2.4. Function space representation. As seen above, a second countable T0-space
can be treated as a represented space, but the latter is a much larger class. One of
the important differences is the existence of an exponential (i.e., a function space).
To be more precise, the category of second countable T0-spaces is not cartesian
closed, but the category of represented spaces is cartesian closed.

If X and Y are both cb0-spaces, a continuous function f : X → Y is determined
by a set Ψ ⊆ ω2. Thus, an enumeration of elements of Ψ can be thought of as a
name of f , which gives a representation of the function space C(X,Y ).
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Analyzing the formula (1), we observe that each element ⟨n, e⟩ ∈ Ψ determines
the basic neighborhood

[e, n] :=
{
f ∈ C(X,Y ) : f

[
βXDe

]
⊆ βYn

}
,

where βXDe
=

∩
i∈De

βXi . The important point is that this basic neighborhood is not
necessarily open. In other words, the collection ([e, n])e,n∈ω gives a certain kind of
countable basic neighborhood system on C(X,Y ), but does not give a countable
open basis. This suggests that the function space C(X,Y ) is not necessarily second-
countable.

A useful tool for explaining this is Arhangel’skii’s notion of a network in general
topology. A network for a topological space X is a collection N of subsets of X
such that for any open set U ⊆ X and a point x ∈ U there exists N ∈ N with
x ∈ N ⊆ U .

For example, the collection of basic neighborhoods [e, n] gives a countable net-
work for C(X,Y ). In fact, this collection is even better: It forms a countable
cs-network (see e.g. [22]), but we will not use this notion, so we omit the explana-
tion. The notion of a network behaves very well for function space construction, so
it is deeply studied in the context of functional space topologies. Indeed, if X and Y
are topological spaces having countable cs-networks (NX

i ) and (NY
j ), respectively,

the basic neighborhoods

[e, n] :=
{
f ∈ C(X,Y ) : f

[
NX
De

]
⊆ NY

n

}
,

form a countable cs-network for the function space C(X,Y ), whereNX
De

=
∩
i∈De

NX
i .

A T0-space with a countable network can always be treated as a represented
space. If x ∈ N ∈ N then N is called an N -neighborhood of x. A local network
at x is a collection M of N -neighborhoods of x such that for any open set U ⊆ X
with x ∈ U there exists N ∈ M with x ∈ N ⊆ U . A countable network N for X
induces the following representation of X :

δN (p) = x ⇐⇒ {Np(n) : n ∈ ω} is a local network at x.

Roughly speaking, a name of x is an enumeration of a local network at x. We
call δN the induced representation of X (obtained from N ). We also use the symbol
NameN (x) to denote the set of all enumerations of a local network at x, that is,

NameN (x) = δ−1
N {x} = {p ∈ ωω : δN (p) = x}

If N is clear from the context, we also use Name(x) instead of NameN (x).

1.2.5. Hyperspace representation. As a special case of the function space C(X,Y ),
the case where Y is the Sierpiński space is particularly important. Here, the
Sierpiński space S is the nontrivial connected two-point space; that is, the un-
derlying set is {⊤,⊥} and the open sets are ∅, {⊤} and {⊤,⊥}. Clearly, a set
A ⊆ X is open iff the characteristic function χA : X → S is continuous. Hence, we
can always think of C(X, S) as the hyperspace of open subsets of X. We use O(X)
to denote C(X, S) when we consider a point in C(X, S) as an open subset of X. An
open set A in X is computable if χA : X → S is computable.

A basic neighborhood in O(X) is of the form [e] = {U ∈ O(X) : NX
De

⊆ U},
which yields a countable cs-network for O(X). Note that the basic neighborhoods
in O(X) are exactly the basic neighborhoods in C(X, S) in the sense of Section
1.2.4. To see this, note that NX

De
⊆ U iff χU [N

X
De

] ⊆ {⊤}.
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1.2.6. Admissible representation. For a topological space X = (X, τ), we say (fol-
lowing Schröder [39]) that δ : ⊆ ωω → X is admissible if it is continuous, and for any
continuous function γ : ⊆ ωω → X there exists a continuous function θ : ⊆ ωω → ω
such that γ = δ ◦θ. Note that admissible representations are the ones which realize
the coarsest quotient topology refining τ .

For example, the representation δβ induced from a cb-representation is always
admissible. In fact, if N = (Ne)e∈ω is a countable cs-network for a T0-space X,
Schröder [39] showed that the induced representation δN always gives an admissible
representation of X. Conversely, if δ : ⊆ ωω → X is an admissible representation,
then (δ[σ])σ∈ω<ω yields a countable cs-network. In this way, admissibly represented
spaces correspond to T0-spaces having countable cs-networks.

1.2.7. Computable topology. A computable homeomorphism f : X → Y is a com-
putable bijection whose inverse function f−1 : Y → X is also computable. A com-
putable embedding f : X → Y is a computable homeomorphism f : X → Z for some
subspace Z ⊆ Y . A represented space X is computably compact if cov : O(X) → S
is computable, where cov(U) = ⊤ iff X = U . If X is a represented cb0 space, then
X is computably compact iff it is compact and there is a computable enumeration
of all finite open covers; that is, {e ∈ ω : X =

∪
n∈D βn} is c.e., where (βn)n∈ω is a

countable basis for X; see e.g. [36, 11].

1.2.8. Degree Theory. For the basics in degree theory in represented topological
spaces, we refer the reader to Kihara-Ng-Pauly [22].

Recall that the degree of a point in a represented space X is called an X-degree.
The ωω-degrees are called the total degrees, which may be identified with the Turing
degrees in the classical sense. The C([0, 1],R)-degrees are called the continuous
degrees [31]. Note that the 2ω-degrees are exactly the ωω-degrees, and the Rω-
degrees are exactly the C([0, 1],R)-degrees. The O(ω)-degrees can be identified
with the enumeration degrees, see e.g. [23, 22], so we often use an e-degree to mean
an O(ω)-degree.

For a class Γ, a point x is quasi-minimal with respect to Γ-degrees or Γ-quasi-
minimal if x is not computable, and for any y ∈ Γ if y ≤T x then y is computable;
see also [22]. We simply say that a point x is quasi-minimal if x is quasi-minimal
with respect to total degrees (i.e., ωω-quasi-minimal).

1.3. Basic observations. The notions we have discussed so far are rather abstract,
so they may be a little difficult to understand, so let us describe them concretely
in a specific situation. Assume that X is second-countable T0-space, that is, it is
endowed with the T0-topology generated by a countable collection β = (Bn)n∈ω of
subsets of X. Hereafter, we use BD to denote

∩
d∈D Bd. Given f : X → Y , we say

that N is a (coded) local network at f if

(∀x)(∀e) [f(x) ∈ Be ↔ (∃D finite) [x ∈ BD and ⟨D, e⟩ ∈ N ]].

Here a finite set D ⊆ ω is identified with its canonical index. In higher type
computability theory, a coded local network has also been called an associate [33].

Remark. This is consistent with the definition of a local network that has already
been introduced. Recall that [D, e] = {f ∈ C(X,Y ) : f [BD] ⊆ Be} gives a count-
able cs-network for the function space C(X,Y ). Then N is a coded local network
at f iff ([D, e] : ⟨D, e⟩ ∈ N) is a local network at f .
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Remark. As a special case (i.e., Y = S), a (coded) local network at U ∈ O(X) is
a set of finite sets D such that BD ⊆ U , and the union of all BD is U .

Observation 1.2. A function f is continuous iff there is a local network at f .

Proof. If f is continuous, then f−1[Be] is open, and by second countability, f−1[Be]
can be written as the union of countably many basic open sets (BDe

n
)n∈ω. For each

e, enumerate such ⟨De
n, e⟩ into N . It is easy to see that N is a local network at

f . Conversely, if N is local network, then f−1[Be] =
∪

⟨D,e⟩∈N BD, which is open.

Therefore, f is continuous. □

One of our aims is to compare the degree structures of various function spaces.
For this purpose, the following observation is also useful.

Observation 1.3. If Y is computably embedded into Z, then C(X,Y ) is computably
embedded into C(X,Z) for any X. In particular, C(X,Y )-degrees are included in
the C(X,Z)-degrees.

In particular, if Y is a represented cb0-space, then every C(X,Y )-degree has a
C(X, Sω)-degree.

Corollary 1.4. If Y is a represented cb0 space, then the C(X,Y )-degrees are in-
cluded in the O(ω ×X)-degrees.

Proof. As Y is computably embedded into Sω, then by Observation 1.3, C(X,Y )
is computably embedded into C(X,Sω) ≃ C(X × ω, S) ≃ O(ω ×X). □

Recall that a computable open set in X is a computable point in O(X).

Observation 1.5. If A ⊆ X is a computable open set in a second-countable T0
space X, then the O(A)-degrees are included in the O(X)-degrees.

Proof. Any open set of A is an open set of X, and for any open set U of X, U ∩A
is an open set of A. Thus, for any S ⊆ A, given a local network N at S in O(X),
{U ∩A : U ∈ N} is a local network at S in O(A). Conversely, given a local network
N at S in O(A), if BAD is enumerated into N , enumerate all open sets of the form
BAD∪BXE . This yields a local network at S in O(X). Thus, the degree of S in O(A)
is exactly the degree of S in O(X). □

We also mention some topological properties on C(X,Y ). Define δX→Y (p) = f
iff p ∈ Name(f). We assume that C(X,Y ) is endowed with the final topology
with respect to δX→Y . A set is saturated if it is an intersection of open sets. For a
saturated compact setK and an open set U , it is not hard to see that {f : f [K] ⊆ U}
is open. As every set in a T1-space is saturated, every compact-open set is open.
Indeed, Schröder [37, Proposition 2.4.18 (4) and Proposition 4.2.5 (4)] pointed out
that C(X,Y ) is topologized by the sequentialization of the compact-open topology.

Remark. Assume that X is T1. If Y is Ti for i ∈ {1, 2} then so is C(X,Y ). This
is because every singleton is compact.

1.3.1. Characterization of reducibility. For a space X equipped with a countable
network NX = (Ne)e∈ω, we use the symbol Net(x) to denote the set of all coded
local networks at x ∈ X, and Name(x) to denote the set of all enumerations of coded
local networks at x.
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Recall that x ≤T y iff Name(x) is Medvedev reducible to Name(y). However, to
show x ≤T y we will often construct an enumeration operator Φ satisfying the
following statement:

(∃Φ)(∀Ny ∈ Net(y))(∃Nx ∈ Net(x)) [Nx ≤e Ny via Φ].(2)

Lemma 1.6. x ≤T y iff (2) holds for some enumeration operator Φ.

Proof. (⇐) Given σ ∈ ω<ω, let Ψ(σ) be a sequence consisting of n’s such that ⟨n,D
for some D ⊆ rng(σ) is enumerated into Φ by stage |σ|. Then Ψ yields a Medvedev
reduction witnessing x ≤T y. To see this, given a name p of y, we have a local
network Ny = rng(p) at y. Hence, Ψ(p) is an enumeration of Φ(Ny), which is a
local network at x.

(⇒) Let Ψ be a Medvedev reduction witnessing x ≤T y. If Ψ(σ) = τ then put
⟨τ(n), rng(σ)⟩ ∈ Φ for each n < |τ |. We show that Φ is the desired enumeration
operator. Let Ny be a local network at y. If σ ∈ ω<ω and rng(σ) = D ⊆ Ny then σ
can be extended to a name of y, so Ψ(σ) must be extendible to a name of x; hence
Ψ(σ) consists of NX -neighborhoods of x. Thus, if Φ(σ) = τ then τ(n) is an NX -
neighborhood of x, so Φ(Ny) consists of NX -neighborhoods of x. An enumeration
p of Ny is a name of y, so Ψ(p) enumerates a local network Nx at x, which implies
Nx ⊆ Φ(Ny). Hence, Φ(Ny) is a set of NX -neighborhood of x including Nx. Then
one can see that Φ(Ny) is also a local network at x. □

In order to compare degrees of points in second countable spaces and points
in function spaces, we fix the natural embedding of e-degrees into the Medvedev
degrees, by associating each set A ⊆ ω with Enum(A) = {f ∈ ωω : rng(f) = A}.

The following lemma is useful:

Lemma 1.7. A point x has an e-degree iff there is a “canonical” local network at
x which is e-reducible to any local network at x via a single enumeration operator;
that is,

(∃Φ)(∃E ∈ Net(x))(∀N ∈ Net(x)) [E ≤e N via Φ].

Proof. Assume that x has an e-degree. Then there is A ⊆ ω such that Enum(A) ≡M
Name(f). Let Φ witness ≤M and Ψ witness ≥M . Given an enumeration of A, we
can construct the set S of all finite enumerations of finite subsets of A. Then define
E be the set of all neighborhoods of x enumerated by Ψ(σ) for some σ ∈ S, that
is, E = {Ψ(σ;n) : σ ∈ S, n < |Ψ(σ)|}. This is clearly a local network at x. □

Moreover, such a canonical local network E represents the e-degree of x. In
many cases, a canonical (coded) local network is the maximum local network
w.r.t. (Ne)e∈ω; that is, E = {e ∈ ω : x ∈ Ne ∈ N}. In higher type computability
theory, the maximum local network has also been called the principal associate [33].

2. Hyperspace of open sets: C(X,S)

In this paper we will consider C(X,Y ) for various well-known combinations of
second-countable T0-spacesX and Y . The aim is to examine their degree structures.
The first case we will consider is when Y is the Sierpiński space S (see Section 1.2.5);
that is, we consider hyperspaces O(X) ≃ C(X, S) for various X. The results are
summarized in Table 1.
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Hyperspace Degree structure Reference
O(ωcof) the least Medvedev degree Trivial
O(R<) exactly all R<-degrees Proposition 2.3
O(2ω)

exactly all e-degrees

Corollary 2.2
O([0, 1]ω) Corollary 2.2
O(ωωco) Proposition 2.4
O(ωωcof) Proposition 2.7
O (Amax(ω

<ω)) Corollary 2.9
O(Sω) Corollary 2.11
O (Q) strictly contains all e-degrees, and Theorem 2.22

is strictly contained in the O(ωω)-degrees
O(ωω) strictly contains all e-degrees [24]
O(Rω) exactly all O(ωω)-degrees Corollary 2.15
O (C(ωcof)) exactly all O(ωω)-degrees Theorem 2.18
O (Name(ω⟨2⟩)) strictly contains all O(ωω)-degrees Theorem 2.29

Table 1. Degree structures of hyperspaces of open sets

2.1. Second countable hyperspaces of open sets. In general, even if X is
second-countable, O(X) is not necessarily second-countable. For example, O(ωω)
is not second-countable. Here, we look for the conditions under which O(X) is
second-countable.

2.1.1. Hyperspaces on metric spaces. A proper metric space is a metric space all of
whose closed ball is compact. An computable proper metric space is a computable
metric space (X, d, α) such that, given a rational closed ball B, one can enumerate
all finite basic open covers of B. To be more precise, (X, d) is a proper metric
space, α = (αi)i∈ω is a dense sequence of points in X, the map (i, j) 7→ d(αi, αj)
is computable, and there exists a computable function Φ such that for any i ∈ ω
and positive rational p ∈ Q, Φ(i, p) enumerates all finite sets D with B(αi; p) ⊆∪

⟨j,q⟩∈D B(αj ; q), where B(x; r) and B(x; r) are the open and closed balls of center

x and radius r.
Note that a computable (proper) metric space X can be always thought of as a

represented cb0 space. Indeed, (B(αi; p))i,p gives a cb0-representation of X.

Proposition 2.1. If X is a computable proper metric space, then the O(X)-degrees
are included in the e-degrees.

Proof. Given an open set U in X, E = {⟨i, q⟩ : B(αi; q) ⊆ U} forms a coded
local network at U . If N is a coded local network at U , then observe that N ′ =
{B(αi; q/2) : ⟨i, q⟩ ∈ N} is also a local network at U . For ⟨i, q⟩ ∈ N , as B(αi; q/2) ⊆
U is compact and N yields an open cover of U , one can effectively find a finite set
D ⊆ N such that B(αi; q/2) ⊆

∪
⟨j,p⟩∈D B(αj ; p). Then enumerate all rational

open balls included in
∪

⟨j,p⟩∈D B(αj ; p). This procedure eventually enumerates all

elements in E. By Lemma 1.7, this implies that U has an e-degree. □

In particular, if X is a computable compact metric space, then O(X) has an
e-degree.
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Corollary 2.2. The O(2ω)-degrees and the O([0, 1]ω)-degrees are exactly the e-
degrees.

Proof. By Proposition 2.1, these degrees are all e-degrees since 2ω and [0, 1]ω are
computably compact. Conversely, observe that ω can be embedded into 2ω and
[0, 1]ω, where the embedded images are computably open. Thus, by Observa-
tions 1.3 and 1.5, any O(ω)-degree, i.e., any e-degree, is an O(2ω)-degree and an
O([0, 1]ω)-degree. □

2.1.2. Hyperspaces on non-metrizable spaces. Let R< be the space of real numbers
endowed with the lower topology; that is, each open set in R< is of the form
(x,∞) = {y ∈ R : y > x} for some real x.

Proposition 2.3. The O(R<)-degrees are exactly the R<-degrees.

Proof. An open set in R< is simply an interval (x,∞) for some x. Thus, the
collection ((q,∞))q∈Q is a countable network for O(R<). Then a local network N at
(x,∞) ∈ O(R<) is a collection of sets of the form {U ∈ O(R<) : (q,∞) ⊆ U}, where
the infimum of q’s is exactly x. Now, Name((x,∞)) consists of all enumerations of a
coded local network at (x,∞), which is in turn an arbitrary collection of rationals
with infimum x. Given any member of Name((x,∞)), we can clearly enumerate the
right cut of x, and hence the Nbase(x) in R<. The converse is also clear. □

Let ωωco be the space of all sequences of natural numbers endowed with the
cocylinder topology (see [22]); that is, a subbasis element is the complement ωω \ [σ]
of a cylinder [σ] = {f ∈ ωω : f extends σ} for some σ ∈ ω<ω.

Proposition 2.4. The O(ωωco)-degrees are exactly the e-degrees.

Proof. By definition, a basis of ωωco consists of sets of the form
∩
σ∈D(ω

ω \ [σ]) for
a finite set D ⊆ ω<ω. These sets are rewritten as ωω \ [D], where [D] =

∪
σ∈D[σ].

Hence, a basic neighborhood in O(ωωco) is of the form {U ∈ O(ωωco) : ω
ω \ [D] ⊆ U}.

This condition is equivalent to ωω \ U ⊆ [D].
Given U ∈ O(ωωco), consider F = ωω \ U . It is not hard to see that a name of

U is a sequence (Dn)n∈ω of sets of finite strings such that F =
∩
n∈ω[Dn]. Note

that TU = {σ ∈ ω<ω : F ∩ [σ] ̸= ∅} is a full-or-finitely-branching tree; that is,
for any σ ∈ ω<ω, either all strings extending σ are contained in TU or σ has only
finitely many immediate successors in TU . This is because if σ is not full-branching,
then σ⌢i ̸∈ TU for some i ∈ ω, which is witnessed by Dn for some n; that is, no
initial segment of σ⌢i is contained in Dn. Since Dn is finite, at most finitely many
immediate successors of σ can be extended to an element in Dn. This means that
σ is finitely branching in TU .

For each σ ∈ ω<ω consider succU (σ) = {i ∈ ω : σ⌢i ∈ TU}. This is either ω or
finite. Now let E = {⟨σ,C⟩ : σ ∈ ω<ω and C ⊆ ω finite such that succU (σ) ⊆ C}.
Note that D depends only on U and not on any particular name of U . We claim
that Name(U) ≡M Enum(E), and hence U has an e-degree.

To see Name(U) ≥M Enum(E), given any name of U we can effectively enumerate
the complement of TU and in particular the complement of succU (σ). Moreover, one
can compute a partial function bU : ⊆ ω<ω → ω such that if succU (σ) is finite then
bU (σ) is defined and i ≤ bU (σ) for any i ∈ succU (σ). This is because if succU (σ)
is finite then as in the above argument, there is n such that at most finitely many
immediate successors of σ can be extended to an element in Dn. Since Dn is finite,
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one can compute bU (σ) := max{i : σ⌢i extends to an element in Dn}. Now, at
stage s, we have the approximations succU (σ)[s] and bU (σ)[s], and then enumerate
all finite sets C such that {i ≤ bU (σ)[s] : i ∈ succU (σ)[s]} if bU (σ)[s] is defined.
This procedure enumerates all elements of E.

To see Name(U) ≤M Enum(E), let an enumeration E = (⟨σs, Cs⟩)s∈ω be given.
Let D0 be the singleton {⟨⟩} consisting of the empty string ⟨⟩. Then define Ds+1 =
(Ds\{σs})∪{σs⌢i : i ∈ Cs} for any s ∈ ω. It is not hard to see that F =

∩
n∈ω[Dn],

so D = (Ds)s∈ω is a name of U .
Conversely, let A ⊆ ω be given, and we wish to show that Enum(A) has an

O(ωωco)-degree. Consider a closed set F ⊆ ωω in Baire space such that 0n1ω ∈ F
iff n ̸∈ A. Recall that an O(ωωco)-name of ωω \ F is a collection of finite covers
[Dn] of F such that F =

∩
n∈ω[Dn]. To see that ωω \ F ∈ O(ωωco) is reducible to

A ∈ O(ω), if we see n ∈ A, we enumerate a finite cover of F which do not cover
[0n1]. To see that A is reducible to F , if we see that F has a finite cover which
does not cover 0n1ω, then enumerate n ∈ A. Thus, A ∈ O(ω) is T -equivalent to
ωω \ F ∈ O(ωωco). □

2.1.3. Hyperspaces on spaces with compact bases. Let us discuss a general condition
for all points in X to have e-degrees. As we have already seen, points in a com-
putable metric space X with computably compact balls have e-degrees. Therefore,
one may expect that some compactness property for the basis elements plays an
important role. Indeed, it is known that a second-countable Hausdorff space X is
locally compact if and only if O(X) is second-countable, cf. de Brecht-Schröder-
Selivanov [10]. Since we mainly consider non-Hausdorff spaces, we need a slightly
different version, which requires a stronger condition than local compactness.

Lemma 2.5. Let (X,β) be a represented cb0 space whose basis β = (Be)e∈ω is
uniformly computably compact; that is, given e, one can effectively enumerate all
finite open covers of the compact open set Be. Then the O(X)-degrees are included
in the e-degrees.

Proof. Given an open set U ∈ O(X), we show that E = {e : Be ⊆ U} is a canonical
local network at U . To see this, note that uniform computable compactness is
equivalent to computability of cov : ω × O(X) → S defined by cov(e,U) = ⊤ iff
Be ⊆ U . This implies that E = {e : cov(e,U) = ⊤} is uniformly c.e. relative to
any name of U ; in particular, E is e-reducible to any N ∈ Net(U) via a single
enumeration operator. Hence, E is canonical, so U has an e-degree by Lemma
1.7. □

There are surprisingly many spaces to which this lemma can be applied. Let us
look at the first example. Let ωcof be the space of natural numbers endowed with
the cofinite topology; that is, cofinite subsets of ω form a basis. One can easily
see that ωcof is compact, so ωωcof is also compact by Tychonoff’s theorem. Degree
theoretically, the space ωωcof characterizes the graph-cototal degrees [1, 22].

We explicitly describe a basis of ωωcof . Observe that basic open sets [i,D] = {x ∈
ωω | x(i) ̸∈ D} form a subbasis. Thus, for a finite collection (Di)i∈I of finite subsets
of ω, [(Di)i∈I ] = {x ∈ ωω : (∀i ∈ I) x(i) ̸∈ Di} is open, and such open sets form a
basis, referred to as the standard basis.

Proposition 2.6. The standard basis for ωωcof is uniformly computably compact.
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Proof. If D is finite, [D] = {n ∈ ωcof : n ̸∈ D} is homeomorphic to ωcof . Thus,
[i,D] ≃ ωicof × [D] × ωωcof is homeomorphic to ωcof . Similarly, [(Di)i∈I ] is homeo-
morphic to ωωcof , which is compact.

It remains to show that one can effectively enumerate all finite open covers of
basis elements [(Di)i∈I ]. Indeed, we show that the covering relation [(Di)i∈I ] ⊆∪
k<ℓ[(E

k
j )j∈Jk ] is decidable, where (Di)i∈I and (Ekj )j∈Jk for k < ℓ are finite col-

lections of finite sets. To be explicit, [(Di)i∈I ] ⊆
∪
k<ℓ[(E

k
j )j∈Jk ] iff

for any γ ∈
∏
k<ℓ Jk there exists j ∈ ω such that

∩
γ(k)=j E

k
j ⊆ Dj(3)

where we put
∩

∅ = ω and Dj = ∅ for j ̸∈ I. Since we only need to check finitely
many γ’s and j ∈

∪
k<ℓ Jk, the truth-value of (3) is computable in a finite number

of steps.
To show the equivalence, note that [(Di)i∈I ] ⊆

∪
k<ℓ[(E

k
j )j∈Jk ] iff for any x ∈ ωω,

x(i) ̸∈ Di for any i ∈ I implies the existence of k < ℓ such that x(j) ̸∈ Ekj for any
j ∈ Jk. Considering the contrapositive, for any x ∈ ωω

(∀k < ℓ)(∃j ∈ Jk) x(j) ∈ Ekj =⇒ (∃i ∈ I) x(i) ∈ Di.(4)

For (3)⇒(4): assuming the premise of (4) we get a function γ ∈
∏
k<ℓ Jk such

that x(γ(k)) ∈ Eℓγ(k) for any k < ℓ. Thus, x(j) ∈
∩
γ(k)=j E

k
j for any j. By (3),

we get j such that x(j) ∈
∩
γ(k)=j E

k
j ⊆ Dj . In this case, we must have Dj ̸= ∅, so

j ∈ I.
For (4)⇒(3): We show the contrapositive. By the negation of (3), there exists

γ ∈
∏
k<ℓ Jk such that

∩
γ(k)=j E

k
j ̸⊆ Dj for any j ∈ ω. Then there exists x ∈ ωω

such that x(j) ∈
∩
γ(k)=j E

k
j but x(j) ̸∈ Dj for any j. Then, for any k < ℓ,

x(j) ∈ Ekj for j = γ(k) ∈ Jk, so the premise of (4) holds; however, x(j) ̸∈ Dj for
any j, so (4) fails. □

Corollary 2.7. The O(ωωcof)-degrees are exactly the e-degrees.

Proof. By Lemma 2.5 and Proposition 2.6.
It remains to show that every O(ω)-degree is an O(ωωcof)-degree. To see this, note

that [n,m] = {g ∈ ωωcof : g(n) ̸= m} is open in ωωcof . Thus, given S ⊆ ω, consider
the open set US =

∪
n∈S [n, 0]. Note that {⟨n, 0⟩ : n ∈ S} is a local network at

US , which is e-reducible to S. As already seen, US has a canonical local network,
which is E(US) = {⟨a, b⟩ : [a, b] ⊆ US} by Lemma 2.5. We now have E(US) ≤e S,
so it remains to show that S ≤e E(US). Then observe that a ∈ S if and only if
⟨a, 0⟩ ∈ E(US). This is because, if a ∈ S, clearly [a, 0] ⊆

∪
n∈S [n, 0]. Conversely, if

a ̸∈ S, then consider a function g : ω → ω defined by g(a) = 1 and g(n) = 0 for any
n ̸= a. Then, clearly g ∈ [a, 0], but g ̸∈ [n, 0] for any n ̸= a. Thus, g ̸∈

∪
n∈S [n, 0]

since a ̸∈ S. Hence, g ∈ [a, 0] \ US , so [a, 0] ̸⊆ US . Hence, ⟨a, 0⟩ ̸∈ E(US). This
shows S ≤e E(US). □

There is an important class of enumeration degrees called cototal degrees [28, 1],
which can be characterized topologically as the degrees of points in computable Gδ
spaces; see [22]. In fact, all cototal degrees can be realized by points in a single
computable Gδ space Amax(ω

<ω), the maximal antichain space [22]. A point in
Amax(ω

<ω) is a maximal antichain in ω<ω with respect to the prefix relation, and
a basic open set is of the form [D] = {A ∈ Amax(ω

<ω) : A ∩D = ∅}, where D is
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a finite subset of ω<ω. The [D]’s form a basis for Amax(ω
<ω), referred to as the

standard basis.

Proposition 2.8. The standard basis for the maximal antichain space Amax (ω
<ω)

is uniformly computably compact.

Proof. We first show compactness of a basic open set [E] in the maximal antichain
space. Let ([Dn])n∈ω be an open cover of [E]. We define a finitely branching tree
T as follows: (σ0, σ1, . . . , σℓ) ∈ T iff σn ∈ Dn \ E for all n ≤ ℓ, and {σn}n≤ℓ is
an antichain. Suppose for the sake of contradiction that T has an infinite path
(σn)n∈ω. Then, {σn}n∈ω forms an antichain (allowing duplicates).

We claim that there exists a maximal antichain A ⊆ ω<ω \E including {σn}n∈ω.
To see this, first take any maximal antichain B including {σn}n∈ω. If σ ∈ B ∩ E,
then B \ {σ} ∪ {σ⌢τ : τ ∈ ωs} is still a maximal antichain, where s is a number
which is greater than the length of all strings in E. Repeating this process, we
eventually obtain a maximal antichain A that does not intersect with E, where
each σn remains in A since σn ̸∈ E. This verifies the claim.

Now we get A ∈ [E], but A∩ [Dn] ̸= ∅ for all n ∈ ω, and therefore, A ̸∈
∪
n[Dn],

which contradicts our assumption that ([Dn]) is an open cover of [E]. Therefore,
T has no infinite path, and by König’s lemma, there is ℓ such that T has no nodes
of length ≥ ℓ.

We claim that ([Dn])n<ℓ is a finite open cover of [E]. Otherwise, there is a
maximal antichain A ∈ [E] such that A ̸∈

∪
n<ℓ[Dn]. That is, A∩Dn ̸= ∅ for all n <

ℓ. Choose σn ∈ A∩Dn for each n < ℓ, and then (σn)n<ℓ ̸∈ T since T has no nodes
of length ≥ ℓ. We also have σn ∈ Dn \ E since A ∩ E = ∅. By the definition of T ,
this means that the set {σn}n<ℓ is not an antichain (when eliminating duplicates),
so there are i ̸= j such that σi ̸= σj and σi is comparable with σj . However,
{σi, σj} ⊆ A, which contradicts that A is an antichain. Consequently, ([Dn])n≤ℓ is
a finite subcover of ([Dn])n∈ω.

Consequently, [E] is compact. Moreover, finiteness of a finitely branching tree is
recognizable, so this verifies uniform computable compactness of basis elements [E].
Indeed, the above argument gives a decidable characterization for the covering re-
lation [E] ⊆

∪
n<ℓ[Dn] for finite sets Dn, E ⊆ ω<ω. To be explicit, [E] ̸⊆

∪
n<ℓ[Dn]

iff there exists an antichain {σn}n<ℓ such that σn ∈ Dn \ E for each n < ℓ. □

Corollary 2.9. The O (Amax(ω
<ω))-degrees are exactly the e-degrees.

Proof. By Lemma 2.5 and Proposition 2.8.
It remains to show that every O(ω)-degree is an O (Amax(ω

<ω))-degree. To see
this, recall that [D] = {A ∈ Amax(ω

<ω) : A∩D = ∅} is open in Amax(ω
<ω). Thus,

given S ⊆ ω, consider the open set US =
∪
n∈S [ñ], where ñ is the singleton {⟨n⟩}.

Note that {ñ : n ∈ S} is a local network at US , which is e-reducible to S. As
already seen, US has a canonical local network, which is E(US) = {D : [D] ⊆ US}
by Lemma 2.5. We now have E(US) ≤e S, so it remains to show that S ≤e E(US).
Then observe that a ∈ S if and only if ã ∈ E(US). This is because, if a ∈ S, clearly
[ã] ⊆

∪
n∈S [n, 0]. Conversely, if a ̸∈ S, then consider the set A = {⟨a,m⟩ : m ∈

ω} ∪ {⟨n⟩ : n ̸= a}. Then A is clearly a maximal antichain in ω<ω, and A ∈ [ã];
however A ̸∈ [ñ] for any n ̸= a. Thus, A ̸∈

∪
n∈S [ñ] since a ̸∈ S. Hence, A ∈ [ã]\US ,

so [ã] ̸⊆ US . Hence, ã ̸∈ E(US). This shows S ≤e E(US). □
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The product Sierpiński space Sω also has the similar property. For a finite set
D ⊂ ω, we use [D] to denote the set of all A such that D ⊆ A. These form a basis
of the topology on Sω, which is referred to as the standard basis.

Proposition 2.10. The standard basis for the universal second-countable T0 space
Sω is uniformly computably compact.

Proof. An open set U in Sω is of the form
∪
E∈U [E], where U is a collection of

finite sets. For any such U , we claim that [D] ⊆ U if and only if there is E ⊆ D
such that E ∈ U . For the backward implication, E ⊆ D implies [D] ⊆ [E], so
[D] ⊆

∪
E∈U [E] = U . For the forward implication, assume [D] ⊆ U , which means

that D ⊆ A implies E ⊆ A for some E ∈ U . Considering A = D, we get E ⊆ D
for some E ∈ U . This verifies the claim. This shows that, if [D] is covered by a
family ([E])E∈U , it is covered by a single element [E]; in particular, [D] is compact.
Moreover, the characterization of the covering relation [D] ⊆ U is effective, which
verifies uniform computable compactness. □
Corollary 2.11. The O(Sω)-degrees are exactly the e-degrees.

Proof. By Lemma 2.5 and Proposition 2.10.
It remains to show that every O(ω)-degree is an O(Sω)-degree. To see this,

recall that [D] = {A ⊆ ω : D ⊆ A} is open in Sω. Thus, given S ⊆ ω, consider
the open set US =

∪
n∈S [{n}]. Note that {{n} : n ∈ S} is a local network at

US , which is e-reducible to S. As already seen, US has a canonical local network,
which is E(US) = {D : [D] ⊆ US} by Lemma 2.5. We now have E(US) ≤e S,
so it remains to show that S ≤e E(US). Then observe that a ∈ S if and only if
{a} ∈ E(US). This is because, if a ∈ S, clearly [{a}] ⊆

∪
n∈S [n, 0]. Conversely, if

a ̸∈ S, then {a} ∈ [{a}] but {a} ̸∈ [{n}] for any n ̸= a; hence, {a} ̸∈
∪
n∈S [{n}]

since a ̸∈ S. Therefore, A ∈ [{a}] \ US , so [{a}] ̸⊆ US ; thus {a} ̸∈ E(US). This
shows S ≤e E(US). □
2.2. Non-second countable hyperspaces of open sets. We turn our attention
to non-second-countable hyperspaces of open sets.

2.2.1. The hyperspaces on quasi-Polish spaces. Recall that O(ω) is a universal
second-countable T0 space. The question this time is whether O(ωω) has uni-
versality in some sense. The following observation is a partial answer.

Proposition 2.12 (cf. [10, Proposition 7.14]). If X is a quasi-Polish space, then
O(X) is embedded into O(ωω).

Although Proposition 2.12 has already been proved in [10, Proposition 7.14], we
provide the complete proof to discuss its effective version. The key observation is
that for any nonempty quasi-Polish space X there is an open continuous surjection
from ωω onto X; see de Brecht [8, Lemma 38].

A computable function f : X → Y is computably open if U 7→ f [U ] : O(X) →
O(Y ) is computable.

Lemma 2.13. Let X and Y be represented cb0 spaces. Assume that there is a
computable open surjection from X onto Y . Then O(Y ) is computably embedded
into O(X). In particular, the O(Y )-degrees are included in the O(X)-degrees.

Proof. Fix a computable open surjection δ : X → Y . We show that U 7→ δ−1[U ]
gives a computable embedding of O(Y ) into O(X). First note that computability
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of δ always implies computability of δ−1 : O(Y ) → O(X) since the characteristic
function of δ−1[U ] is just the composition χU ◦ δ : Y → S; see e.g. [24]. It remains
to show computability of δ−1[U ] 7→ U . Since δ is surjective, we have δ[δ−1[U ]] =
U . By our assumption, δ is computably open, so δ−1[U ] 7→ δ[δ−1[U ]] = U is
computable. □
Proof of Proposition 2.12. As shown in de Brecht [8, Lemma 38], for any nonempty
quasi-Polish space X there is an open continuous surjection from ωω onto X. Then,
apply (the relativization of) Lemma 2.13. □

A represented cb0 space is computably quasi-Polish if there is a computable open
surjection δ : ω → X; see [9]. Such a space is also called effectively quasi-Polish
in [16]. Lemma 2.13 shows that if X is computably quasi-Polish then O(X) is
computably embedded in to O(ωω). As a consequence, we get the following:

Corollary 2.14. If X is a computable Polish space, then O(X) is computably
embedded into O(ωω).

In particular, the O(X)-degrees are included in the O(ωω)-degrees.

Proof. Let X = (X, d, α) be a computable Polish space; that is, {αi}i∈ω is a dense
subset of X, and (i, j) 7→ d(αi, αj) is computable. We define a system (Bσ)σ∈ω<ω

of rational open sets. Let B⟨⟩ = X. Assume that Bσ has been already defined.

Then, let Bσ⌢n be the n-th rational open ball B of radius less than 2−n whose
formal closure is contained in Bσ; that is, if Bσ = B(αi; q) and B = B(αj ; r)
then d(αi, αj) < q − r. This system (also known as the Suslin scheme; see [20,
Exercise I.7.14]) generates a computable open surjection from ωω onto X. Then
apply Lemma 2.13. □

Let us look at some examples of Polish spaces X for which the degree structure
of O(X) is maximal.

Corollary 2.15. The hyperspaces O(Rω) and O(ωω) are computably bi-embeddable.
In particular, the O(Rω)-degrees are exactly the O(ωω)-degrees.

Proof. The hyperspace O(Rω) is computably embedded into O(ωω) by Proposition
2.14. For the other direction, given σ, put Eσ =

∏
n<|σ|(σ(n) − 2/3, σ(n) + 2/3).

It is not hard to check that this yields a computable embedding of O(ωω) into
O((−2/3,∞)ω), which is computably homeomorphic to O(Rω). □

In the case of X = C(R), the degree structure of O(X) is also maximal.

Proposition 2.16. The hyperspace O(Rω) and O(C(R)) are computably bi-embeddable.
In particular, the O(C(R))-degrees are exactly the O(ωω)-degrees.

To show Proposition 2.16, we use the notion of a computable section-retraction
pair. A space Y is called a retract of X if there are continuous functions r : X → Y
and s : Y → X such that r ◦ s is the identity map on Y . Such an r is called a
retraction, and s is called a section. If such r and s are computable, then Y is
called a computable retract of X. The following is obvious (since a computable
section is especially a computable embedding).

Observation 2.17. If Y is a computable retract of X, then Y computably embeds
into X, and in particular, every Y -degree is an X-degree.

We also need the following fact:
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Fact 1 (cf. Hoyrup [14]). If X0 and Y0 are computable retracts of X1 and Y1, then
C(X0, Y0) is a computable retract of C(X1, Y1).

Proof of Proposition 2.16. We first see that Rω is a computable retract of C(R).
For f ∈ Rω, define s(f) : R → R to be a piecewise linear map extending f : ω → R,
and for g ∈ C(R), consider r(g) : n 7→ g(n). It is easy to check that (s, r) is a
computable section-retraction pair. Hence, by Fact 1 (for Y0 = Y1 = S), O(Rω) is a
computable retract of O(C(R)). In particular, by Observation 2.17, the hyperspace
O(Rω) is computably embeddable into O(C(R)). □

2.2.2. The hyperspace on the function space with cofinite topology. As we have al-
ready seen, if X is a computable quasi-Polish space, the degree structure of O(X)
is contained in that of O(ωω). Here, we look at an example of the degree structure
of the hyperspace on a function space which is not quasi-Polish.

Theorem 2.18. The O (C(ωcof))-degrees are exactly the O(ωω)-degrees.

The proof is divided into two propositions below.

Proposition 2.19. Each O (C(ωcof))-degree is a O(ωω)-degree.

Proof. Recall that for each U ∈ O(ωω), a local network at U is any set N such that
U =

∪
σ∈N [σ]. As usual we identify σ with its code. For each W ∈ O (C(ωcof)),

a local network at W is any set M containing codes of finite sets such that W =∪
F∈M

∩
⟨n,D⟩∈F

{
g ∈ ωω | g−1{n} ⊆ D

}
. We write

[n ◁ D] = {g ∈ ωω | g−1{n} ⊆ D};
see also Definition 3.16 for a related definition. F is said to be good if for each n
there is at most one D such that ⟨n,D⟩ ∈ F , and if ⟨n,D⟩ ∈ F and ⟨n′, D′⟩ ∈ F
and n ̸= n′ then D ∩D′ = ∅. A local network N is good if every F ∈ N is good.
It is easy to see that there is a single enumeration operator ∆ such that if N is a
local network at some W ∈ O (C(ωcof)), then ∆N is a good local network at the
same open set W . For this reason we will concern ourselves in this proof with only
the good local networks of O (C(ωcof)).

In order to show that each O (C(ωcof))-degree is a O(ωω)-degree, we shall need
to interpret basic open sets of O (C(ωcof)) inside O(ωω). We define a labeling ℓ
of all finite strings of positive length by the following. Suppose ℓ has been defined
on every proper initial segment of σ of positive length. Now enumerate all finite

sets disjoint from
∪

0<k<|σ| ℓ (σ ↾ k). Let ℓ(σ) be the σ (|σ| − 1)
th

finite set in this

enumeration. (As usual we identify each finite set with its canonical index). Given
σ ∈ ω<ω of positive length, we identify σ with the finite set Fσ = {⟨0, ℓ(σ ↾
1)⟩, ⟨1, ℓ(σ ↾ 2)⟩, · · · , ⟨|σ| − 1, ℓ(σ)⟩}. Note that each Fσ is good.

Define the enumeration operators Φ and Ψ by the following. If N is a local
network at some U ∈ O(ωω), we let ΦN = {Fσ | σ ∈ N}. If M is a local network
at some W ∈ O (C(ωcof)), we let ΨM =

∪
F∈M

∪
{σ ∈ ω<ω |

∩
⟨n,D⟩∈Fσ

[n ◁ D] ⊆∩
⟨n,D⟩∈F [n ◁ D]}. Notice that the “⊆” condition in the line above can be checked

computably given F and σ.
To complete the proof of Proposition 2.19, we shall prove the following three

statements:

(i) If N and N̂ are local networks at the same U ∈ O(ωω), and U has
the “downwards closed” property that [σ] ⊆ U and

∩
⟨n,D⟩∈Fτ

[n ◁ D] ⊆
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⟨n,D⟩∈Fσ

[n ◁D] implies that [τ ] ⊆ U , then ΦN and ΦN̂ are local networks

at the same W ∈ O (C(ωcof)).

(ii) If M and M̂ are local networks at the same W ∈ O (C(ωcof)), then ΨM

and ΨM̂ are local networks at the same U ∈ O(ωω).
(iii) For every good local network M at W ∈ O (C(ωcof)), Φ(Ψ(M)) is a local

network at W .

First we check that conditions (i) to (iii) imply that each O (C(ωcof))-degree is
a O(ωω)-degree. Let W ∈ O (C(ωcof)). Fix any good local network M at W .
We claim that Name(W ) ≡M Name(U), where U is generated by ΨM . Clearly, Ψ
will reduce every local network of W to a local network of U , thus Name(W ) ≥M
Name(U). Now let N̂ = ΨM and consider a local network N of U . It is easy
to see that U has the “downwards closed” property assumed in (i), by examining
the definition of ΨM . Applying (i) and (iii) we get that ΦN is a local network at
W . This means that Name(W ) ≤M Name(U), and so W has the same degree as
U ∈ O(ωω).

We now prove statement (i). Let N and N̂ be local networks at the same
U ∈ O(ωω), where U has the “downwards closed” property. It suffices to show that∪

F∈ΦN

∩
⟨n,D⟩∈F

[n ◁ D] ⊆
∪

F̂∈ΦN̂

∩
⟨n̂,D̂⟩∈F̂

[n̂ ◁ D̂].

We fix some F ∈ ΦN and some function g ∈
∩

⟨n,D⟩∈F G+(D,n). Let σ ∈ N be

such that F = Fσ. Let α ∈ ωω be defined to be such that ℓ(α(n)) = g−1{n} for
all n; since g is a function, g−1{n} is disjoint from

∪
k<n g

−1{k}. Since U has the
“downwards closed” property, by considering α ↾ |σ|, we see that α ⊃ σ̂ for some

σ̂ ∈ N̂ . This means that g ∈
∩

⟨n̂,D̂⟩∈Fσ̂
[n̂ ◁ D̂].

Now we prove statement (ii). Suppose M and M̂ are local networks at the same
W ∈ O (C(ωcof)). Suppose σ is chosen so that

∩
⟨n,D⟩∈Fσ

[n ◁D] ⊆
∩

⟨n,D⟩∈F [n ◁D]

for some F ∈ M . We shall need to see that [σ] ⊂
[
ΨM̂

]
. Let α ∈ [σ]. De-

fine g so that g−1{n} = ℓ (α ↾ n) ∪ {zn−|σ|}, where zm is the mth element not in∪
k>0 ℓ (α ↾ k). Obviously if zn−|σ| is not defined then we take an empty union.

Clearly g is total and well-defined as a function. Note that g ∈
∩

⟨n,D⟩∈Fσ
[n ◁D] ⊆∩

⟨n,D⟩∈F [n◁D]. Since F ∈M , this means that
∩

⟨n,D⟩∈F [n◁D] ⊆
∪
F̂∈M̂

∩
⟨n̂,D̂⟩∈F̂ [n̂◁

D̂], and so we can fix some F̂ ∈ M̂ such that g ∈
∩

⟨n̂,D̂⟩∈F̂ [n̂◁D̂]. By the definition

of g, this certainly means that
∩

⟨n,D⟩∈Fα↾m [n ◁ D] ⊆
∩

⟨n̂,D̂⟩∈F̂ [n̂ ◁ D̂] for a large

enough m. Thus, α ∈
[
ΨM̂

]
.

Finally we show (iii). Let F ∈M . Let S be the set {σ ∈ ω<ω |
∩

⟨n,D⟩∈Fσ
[n◁D] ⊆∩

⟨n,D⟩∈F [n ◁D]}. Obviously, Φ(S) generates an open set which is contained in the

basic open set generated by F . Conversely, since F is good, by considering all
strings in S of a certain fixed length, we certainly have that the basic open set
generated by F is covered by the open set generated by Fσ for all σ ∈ S of this
fixed length. □

Proposition 2.20. Each O(ωω)-degree is a O (C(ωcof))-degree.

Proof. Given U ∈ O(ωω) we construct W ∈ O(C(ωcof)). Let N be a local network
at U ; that is, U = [N ], where [N ] =

∪
σ∈N [σ]. We construct an enumeration
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operator Φ such that Φ(N) yields a local network at W . To each σ ∈ ω<ω assign
a finite set Dσ ⊆ ω:

D⟨⟩ = {0}, Dσ⌢k = Dσ ∪ {|σ|, rk},
where rk is the kth element in ω \ (Dσ ∪ {|σ|}). For instance, D⟨a⟩ = {0, 1, a+ 2}.
Then put p(σ) =

∩
n≤|σ|[n ◁ D

∗
σ↾n], where D

∗
σ = Dσ \ Dσ↾|σ|−1. So, p(σ) is the

sequence of declarations f−1{n} ⊆ D∗
σ↾n for each n ≤ |σ|.

A finite tree H ⊆ ω<ω is homogeneous if the set of all leaves of H is of the form∏
n<ℓHn for some finite Hn ⊆ ω. Put H ↾ n = {τ ∈ ω≤n : (∀k < n) τ(k) ∈ Hk};

then H = H ↾ ℓ. Then Φ(N) enumerates basic open sets in C(ωcof) in the following
manner: For any homogeneous tree H generated by (Hk)k<ℓ, consider the following
basic open set in C(ωcof):

p̃(H) =
∩
k<ℓ

∩
σ∈H↾k

[
k ◁

∪
{Dσ⌢i : i ∈ Hk}

]
.

If we see [H] ⊆ [Ns] for finite Ns ⊆ N , enumerate p̃(H) into Φ(N). Note that
↓σ := {τ : τ ⪯ σ} is a homogeneous tree, and p̃(↓σ) =

∩
n<|σ|[n ◁ Dσ↾n]. Hence,

p(σ) ⊆ p̃(↓σ). If σ ∈ N then [↓σ] = [{σ}] and {σ} ⊆ N , so p(σ) is enumerated into
Φ(N). Moreover, enumerate [0 ◁ {1}] and [1 ◁ {0}] into Φ(N). Note that what is
enumerated by Φ(N) is a local network at the union W ∈ O(C(ωcof)) of all such

basic open sets. Then define Φ̂(N) to be such W .

As [0 ◁ {1}], [1 ◁ {0}] ⊆ Φ̂(N), if either f−1{0} ⊆ {1} or f−1{1} ⊆ {0} then

f ∈ Φ̂(N). Note that, if f is a constant function, we have f−1{n} = ∅ for all but

one n; in particular, either f−1{0} = ∅ or f−1{1} = ∅. This shows that Φ̂(N)
contains all constant functions.

Claim. If [M ] ⊆ [N ] then Φ̂(M) ⊆ Φ̂(N).

Proof. Let f ∈ Φ̂(M). Then, by the definition of Φ, there is a homogeneous tree

[H] ⊆ [M ], and f ∈ p̃(H). If f is constant, we have f ∈ Φ̂(N) as mentioned above.
Thus, we may assume that f is finite-to-one.

As f is finite-to-one, one can construct a finitely branching infinite homogeneous
tree H∞ such that [H∞] ⊆ [H] and f ∈ p̃(H∞ ↾ k) for any k, where [H∞] is the
set of all infinite paths through H∞.

To see this, assume that H is generated by (Hk)k<ℓ. First note that f ∈ p̃(H)
implies f ∈ p̃(H ↾ m) for any m ≤ ℓ. So, we consider m ≥ ℓ. Inductively assume
that (Hk)k<m is constructed, and f ∈ p̃(H ↾ m). Since f−1{m} is finite, by choosing
a sufficiently large finite set Hm ⊆ ω, we may ensure f−1{m} ⊆

∪
{Dσ⌢i : i ∈ Hm}

for any σ ∈ H ↾ m. This implies f ∈ p̃(H ↾ m+ 1). Continuing this procedure, we
get a sequence (Hk)k∈ω of finite subsets of ω, which generates a tree H∞ such that
[H∞] =

∏
k[Hk].

Now, we have [H∞] ⊆ [H] ⊆ [M ] ⊆ [N ], so we find ℓ such that [H∞ ↾ ℓ] ⊆ [Ns]

at some finite Ns ⊆ N by König’s lemma. Thus, f ∈ p̃(H∞ ↾ ℓ) ⊆ Φ̂(N). □
The above claim shows that our construction U 7→ W does not depend on the

choice of a local network N at U . Thus, we write φ(U) for Φ̂(N), which is well-
defined.

Conversely, given W ∈ O(C(ωcof)), let V be a local network at W . Then Ψ(V )
enumerates all σ such that p(σ) is included in some basic open set enumerated into
V . We show that if W = φ(U), then [Ψ(V )] = U .
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Given any α ∈ ωω, define fα ∈ C(ωcof) by f−1
α {n} = D∗

α↾n. In particular,

f−1
α {0} = {0} and f−1

α {1} = {1, α(0) + 2}. Obviously, we have |f−1
α {n}| ≤ 2 for

each n, and fα is total since we require that n ∈ Dα↾n for any n. Note also that
α ̸= β implies fα ̸= fβ since rj ∈ Dσ⌢j ̸= Dσ⌢k ∋ rk whenever j ̸= k.

Claim. If W ⊆ φ(U), then [Ψ(V )] ⊆ U .

Proof. Assume α ∈ [Ψ(V )]. Then α ∈ [σ] for some σ which is enumerated into
Ψ(V ). By our construction, this happens only if p(σ) is included in some basic
open set in V . Note that fα ∈ p(σ) ⊆W since f−1

α {n} = D∗
σ↾n for any n < |σ|. Let

N be a local network at U . By our assumption, we have fα ∈W ⊆ φ(U) = Φ̂(N).
As f−1

α {0} = {0} and f−1
α {1} = {1, α(0)+2}, we have f−1{0} ̸⊆ {1} and f−1{1} ̸⊆

{0}; that is, f ̸∈ [0 ◁ {1}] and f ̸∈ [1 ◁ {0}]. Thus, the condition fα ∈ Φ̂(N) must
be witnessed by fα ∈ p̃(H) for some homogeneous tree [H] ⊆ [N ]. This means that
f−1
α {k} ⊆

∪
{Dσ⌢i : i ∈ Hk} for any σ ∈ H ↾ k, where assume that H is generated

by (Hk)k<ℓ.
By induction, we show that α ↾ k ∈ H ↾ k for any k ≤ ℓ. If α ↾ k ∈ H ↾ k then

we must have f−1
α {k} ⊆

∪
{D(α↾k)⌢i : i ∈ Hk}. Recall that f−1

α {k} is of the form
{k, rα(k)}, and moreover, rα(k) ∈ D(α↾k)⌢i then i = α(k). Thus, we get α(k) ∈ Hk.
Hence, α ↾ ℓ ∈ H, and so α ∈ [H] ⊆ [N ] = U . □

Claim. If φ(U) ⊆W , then U ⊆ [Ψ(V )].

Proof. Let α ∈ U . Fix any local network N at U , i.e., U =
∪
σ∈N [σ]. Then α ∈ [σ]

for some σ ∈ N . As mentioned above, p(σ) ⊆ p̃(↓σ) is enumerated into Φ(N). We

also have fα ∈ p(σ) since α extends σ. Thus, fα ∈ Φ̂(N) = φ(U) ⊆ W by our
assumption. If V is a local network at W then V must enumerate some basic open
set containing fα, say

∩
n∈I [n ◁ En] for a finite collection (En)n∈I of finite sets.

This means f−1
α {n} = D∗

α↾n ⊆ En; hence [n ◁ D∗
α↾n] ⊆ [n ◁ En], for each n ∈ I.

Then, for m = max I, we get p(α ↾ m) ⊆
∩
n∈I [n◁En], so α ↾ m is enumerated into

Ψ(V ) by our construction. Consequently, α ∈ [Ψ(V )]. □

Now, define ψ(W ) = [Ψ(V )] (which may be ill-defined, in general). If W is of
the form φ(U), by the above claims, U = [Ψ(V )] = ψ(W ) independent of the choice
of V . So, in this case, ψ(W ) is well-defined. Consequently, we get ψ(φ(U)) = U
for any U ∈ O(ωω). As φ and ψ are computable, this concludes that U ∈ O(ωω) is
≡T -equivalent to φ(U) ∈ O(C(ωcof)). □

2.2.3. The hyperspace on the holistic space. Here, we give a few side results. The
holistic space is a represented topological space introduced as a technical tool for
characterizing continuous degrees [2]. A holistic set is any set H ⊆ ωω satisfying
the following properties. For every σ ∈ ω<ω,

• σ⌢(2n) and σ⌢(2n+ 1) are not both in H, for every n.
• If σ ̸∈ H then σ⌢(2n) ∈ H for every n.
• If σ ∈ H then σ⌢(2n+ 1) ∈ H for some n.

The holistic space H is the space of all holistic sets, with the subbasis consisting of
BH
σ = {H ∈ H | σ ∈ H}, where σ is a finite string. If Γ = {σ0, · · · , σk} is a finite

set of finite strings, we let BH
Γ denote

∩
i≤k B

H
σi
. Notice that given Γ0 and Γ1, it is

computable to check if BH
Γ0

⊆ BH
Γ1
. A local network of an element W ∈ O(H) is a

set M of finite sets of finite strings such that W =
∪

Γ∈M BH
Γ .
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Theorem 2.21. The O(H)-degrees are exactly the O(ωω)-degrees.

Proof. Notice that H is a computable Polish space, so by Proposition 2.14, every
O(H)-degree is a O(ωω)-degree. We now prove the other direction.

Given any σ ∈ ω<ω we let φ(σ) be defined to be the string τ such that |τ | = |σ|,
and for every n < |σ| we have τ(n) = 2σ(n)+1. We now define the enumeration op-
erators Φ and Ψ as follows. Given a set N ⊆ ω<ω we let Φ(N) = {{φ(σ)} | σ ∈ N}.
The definition of Ψ is slightly more involved. First, we call a finite set D ⊆ ω<ω

extendible if there is a holistic set H ⊃ D. It is not hard to see ([2, Lemma 5.3])
that the class of all extendible sets is computable. Since BH

D ̸= ∅ if and only if D
is extendible, we will restrict ourselves to those basic open sets generated by an
extendible D.

Definition of H(δ,D). We shall require another definition. Suppose that δ is an
infinite string, and D is a finite set of finite strings such that D ∩ L = ∅ and
D ∪ {φ(δ ↾ i) | i ∈ ω} is consistent for every i. We shall define the set H(δ,D) ⊆
ω<ω by the following. First we put ⟨⟩ ∈ H(δ,D). Now if α ̸∈ H(δ,D), we let
α⌢n ∈ H(δ,D) if and only if n is even. Suppose that α ∈ H(δ,D). For each
n such that there is a sequence (possibly empty) of odd numbers o0, · · · , ok such
that α⌢n⌢o0⌢ · · ·⌢ok ∈ D, we put α⌢n ∈ H(δ,D). Furthermore, if α = φ(δ ↾ i)
then we also put φ(δ ↾ i)⌢(2δ(i) + 1) into H(δ,D). Otherwise if α ̸∈ L we put
α⌢(2m + 1) ∈ H(δ,D) for some m larger than all n (if n does not exist, we take
m = 0). Include no other successors of α. We now claim that H(δ,D) is holistic,
H(δ,D) ⊇ D and H(δ,D) ∩ L = {φ(δ ↾ i) | i ∈ ω}.

To see that H(δ,D) is holistic we need to check that there are no α and k such
that α⌢(2k) ∈ H(δ,D) and α⌢(2k + 1) ∈ H(δ,D). The only way this can happen
is if α ∈ H(δ,D). If α ̸∈ L then it must be that α⌢(2k)⌢o0⌢ · · ·⌢ok ∈ D and
α⌢(2k+1)⌢o′0

⌢ · · ·⌢o′k′ ∈ D for some sequences of odd numbers. However it is clear
that if H is a holistic set and β⌢(2i+1) ∈ H then β ∈ H. Hence if H is any holistic
set such that H ⊇ D, both α⌢(2k) and α⌢(2k+1) must be in H, and D cannot be
consistent. On the other hand, if α ∈ L then it must be that α⌢(2k)⌢o0⌢ · · ·⌢ok ∈
D and α⌢(2k+1) ⊂ φ(δ), which means that D∪{φ (δ ↾ (|α|+ 1)} is not consistent.
In any case, H(δ,D) is holistic.

Now we check that H ⊇ D. Let α⌢(2n)⌢o0⌢ · · ·⌢ok ∈ D for some n and odd
integers o0, · · · ok. (Note that every element of D is of this form since D ∩ L = ∅).
The construction ensures that α⌢(2n) ∈ H(δ,D) (this is true even if α ̸∈ H(δ,D)).
But this means that α⌢(2n)⌢o0⌢ · · ·⌢oi ∈ H(δ,D) for every i ≤ k. Finally we
verify that H(δ,D) ∩ L = {φ(δ ↾ i) | i ∈ ω}. Suppose α⌢(2n + 1) ∈ H(δ,D) ∩ L
(the other direction is obvious). Then as H(δ,D) is holistic, this means that α ∈
H(δ,D) ∩ L, and so we may assume that α = φ(δ ↾ i) for some i. If n ̸= δ(i)
then this means that α⌢(2n + 1)⌢o0⌢ · · ·⌢ok ∈ D for some odd sequence. Hence
D ∩ L ̸= ∅, a contradiction.

Defining Ψ. Given a consistent D ⊆ ω<ω, we define ψ(D) by the following. If
D contains two incomparable elements of L we set ψ(D) = ∅ (here L = φ[ω<ω]).
Otherwise let α be the longest element of L∩D, if it exists, or let α = ⟨⟩ ifD∩L = ∅.
Let ψ(D) contain all σ such that φ(σ) ⊇ α and |φ(σ)| > max{|τ | | τ ∈ D}, and
such that D ∪ {φ(σ)} is consistent. Finally given M ⊆ [ω<ω]<ω we let Ψ(M) =∪
{ψ(D) | D ∈M}.
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Verification. Now we fix an open set U ∈ O(ωω), and with some local network
N . Let W ∈ O (H) be the open set generated by Φ(N). We wish to argue that
Name(W ) ≡M Name(U).

First of all, let [N̂ ] = [N ] = U , and fix some σ̂ ∈ N̂ and some H ∈ BH
φ(σ̂). We

want to show that there exists some σ ∈ N such that H ∈ BH
φ(σ). Since φ(σ̂) ∈ H,

we can find some infinite string δ̂ such that
(
φ(σ̂)⌢δ̂

)
↾ i ∈ L ∩ H for every i.

(Notice that all proper prefixes of φ(σ̂) must also be in L ∩ H). But this means

that there is some δ such that φ
(
(σ̂⌢δ) ↾ i

)
=

(
φ(σ̂)⌢δ̂

)
↾ i for all i. Let i be

such that σ = (σ̂⌢δ) ↾ i ∈ N . But this means that H ∈ BH
φ(σ). We can apply the

argument symmetrically to conclude that Φ witnesses that Name(W ) ≤M Name(U).
Next, we fix a local networkM ofW . We want to verify that [Ψ(M)] = [N ] = U ,

and hence Name(W ) ≥M Name(U) via Ψ. We first argue that [Ψ(M)] ⊆ [N ]. Let
σ ∈ ψ(D) for some consistent D ∈M . Also let δ ⊃ σ be an infinite string. We wish
to find some σ̂ ∈ N such that σ̂ ⊂ δ. Let D′ = D \ {α ∈ L | α is comparable with
φ(σ)}. HenceD′∩L = ∅. SinceD∪{φ(σ)} is consistent, and φ(σ) is longer than any
string in D, we must have D′ ∪ {φ(δ ↾ i)} is consistent for every i. Hence H(δ,D′)
can be constructed and has the property that it is holistic, H(δ,D′) ⊇ D′ ∪{φ(σ)}
and H(δ,D′) ∩ L = {φ(δ ↾ i) | i ∈ ω}. Hence H(δ,D′) ∈ BH

D ⊆ W = [Φ(N)]. Let
σ̂ ∈ N be such that H(δ,D′) ∈ BH

{φ(σ̂)}. As φ(σ̂) ∈ L, this means that σ̂ ⊂ δ.

Now we wish to see that [N ] ⊆ [Ψ(M)]. Let σ ⊂ δ be such that σ ∈ N . Now
H(δ, ∅) ∈ BH

{φ(σ)} ⊆ W . Since M is a local network at W , let D ∈ M be such

that H(δ, ∅) ∈ BH
D . Clearly, α ∈ D ∩ L implies that α ∈ {φ(δ ↾ i) | i ∈ ω}. Since

D ∪ {φ(δ ↾ i) | i ∈ ω} is consistent for all i, so δ ↾ i ∈ ψ(D) for a large enough i.
This means that δ ∈ [Ψ(M)]. □
2.3. An intermediate degree structure between O(ω) and O(ωω). We show
that the hyperspace O(Q) gives an intermediate degree structure between the e-
degrees and O(ωω)-degrees. Here, we consider Q as a subspace of R.

Theorem 2.22. The degree structure of the hyperspace O(Q) is strictly larger than
that of O(ω), but strictly smaller than that of O(ωω).

This theorem is divided into several steps.

Lemma 2.23. O(Q) contains all e-degrees.

Proof. By Observation 2.17 and Fact 1, in order to show that the O(ω)-degrees are
included into the O(Q)-degrees, it suffices to check that ω is a computable retract of
Q. For each n ∈ ω, choose an irrational zn such that zn < n < zn+1. Given q ∈ Q,
one can effectively find the least n such that zn < |q| < zn+1. Then, define r(q) to
be such an n. Clearly, r : Q → ω is a computable retraction, and the identity map
n 7→ n : ω → Q yields a computable section. □

By Corollary 1.4, the C(ωω)-degrees are included in the O(ωω)-degrees since
ω × ωω ≃ ωω. Thus, to see that the O(Q)-degrees do not exhaust the whole
O(ωω)-degrees, it suffices to show that some C(ωω)-degree is not an O(Q)-degree.

In order to prove this, we need some technical notion. We say that a topological
space X is Γ-representable (cf. Schröder-Selivanov [41]) if X has an admissible
representation δ such that Eq(δ) = {(p, q) : p, q ∈ dom(δ) and δ(p) = δ(q)} is in
Γ(ωω).
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Observation 2.24. The hyperspace O(Q) is Π0
3-representable.

Proof. Observe that a local network at U ∈ O(Q) is a collection (Ii)i∈ω of rational
intervals such that U =

∪
i∈ω Ii. If Be is the eth rational interval, then a coded

local network at U ∈ O(Q) is a collection of e’s such that the union of Be’s is
U . Recall that a name of U ∈ O(Q) is an enumeration of a local network at U ;
hence, it is a sequence p ∈ ωω such that U =

∪
n∈ω Bp(n). Recall also that such a

representation p 7→ U is admissible (see Section 1.2.6).
Clearly, δ : ωω → O(Q) is total. Given p ∈ ωω and e ∈ ω, Be ⊆ Up if and only

if every rational r ∈ Be ∩Q is contained in Up, which is a Π0
2 property. Moreover,

Up = Uq if and only if for any e ∈ ω, the property Be ⊆ Up is equivalent to that
Be ⊆ Uq. This is a Π0

3 property. Consequently, O(Q) is Π0
3-representable. □

We use the following fact (where a more general version will be proven later).

Fact 2 (see Theorem 3.21 below). If X is Σ˜ 1
1-representable, then there exists a

C(ωω)-degree with is not an X-degree.

Corollary 2.25. There is a C(ωω)-degree which is not an O(Q)-degree.

Proof. By Observation 2.24 and Fact 2. □
Next, we need to show that the O(Q)-degrees are included in the O(ωω)-degrees.

Michael-Stone [30] showed that every analytic subset A of a Polish space is a quo-
tient of the Baire space ωω. De Brecht et al. [10, Corollary 7.5] used this fact to
show that if A is an analytic subset of a Polish space, then O(A) sequentially em-
beds into O(ωω). By effectivizing the result by de Brecht et al. [10, Theorem 7.4
and Proposition 7.6] which says that O(Q) sequentially embeds into O(ωω), one
can show the following.

Lemma 2.26. For any represented space Y , the function space C(ωω, Y ) contains
all C(Q, Y )-degrees. In particular, the hyperspace O(ωω) contains all O(Q)-degrees.

Proof. If A = Q, the proof described in [30] gives a computable quotient map
δ : ωω → Q. Then, by de Brecht et al. [10, Corollary 7.5], one can see that C(Q, Y )
computably embeds into C(ωω, Y ). □

Finally, we will show that O(Q) contain a point which does not have an e-degree.

Lemma 2.27. There is an C(Q, ω)-degree which is not an e-degree. In particular,
both C(Q) and O(Q) contain a point which does not have an e-degree.

To make the notation simple, instead of the rationals Q, we use the dyadic
rationals Q2, the set of the form n⌢σ⌢0ω for some n ∈ ω and σ ∈ 2<ω. Note
that Q2 ⊆ ωω is a countable metric space with no isolated points, and therefore,
homeomorphic to Q.

Let [σ] be the set of all infinite strings extending σ ∈ ω × 2<ω. We first note
that the computable clopen basis ([σ])σ∈ω×2<ω of Q2 has the following property.

Observation 2.28. In Q2, each basic clopen set [σ] is partitioned into an infinite
set of basic clopen sets.

Proof. To see that Q2 has this property, fix σ. Choose a dyadic irrational α ex-
tending σ. Then, consider the set of all minimal strings in {τ ⪰ σ : α ̸∈ [τ ]}, and
this yields an infinite sequence of disjoint basic clopen sets whose union covers [σ]
as α ̸∈ Q2. □
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A basic neighborhood of the space C(Q2, ω) is of the form [σ, n] = {g ∈ C(Q2, ω) :
[σ] ⊆ g−1{n}}. Therefore, a name of g ∈ C(Q2, ω) is a sequence of declarations
[σ] ⊆ g−1{n} which eventually determines g.

We now give a proof of Lemma 2.27. Note that, in the latter proof, one can
replace Q2 with any space which has a computable clopen basis such that for each
basic clopen set C one can effectively find an infinite partition of C into basic clopen
sets.

Proof of Lemma 2.27. We will define h ∈ C(Q2, ω), by declaring a sequence T =
(Tk) of clopen sets in Q2 such that h−1{k} = Tk.

Let ⟨Φs,Ψs⟩s∈N be a list of all pairs of enumeration operators, which yield partial
computable functions φs : ⊆ C(Q2, ω) → Sω and ψs : ⊆ Sω → C(Q2, ω). At stage
s, we attempt to ensure that φsψs(h) ̸= h whenever ψs(h) ∈ Sω. Assume that we
have constructed a finite set Λs ⊆ ω, and a collection (Tt)t∈Λs of clopen sets, where
we also assume that (Tt)t∈Λs covers {[⟨r⟩]}r<s. Let u be the least element not in
Λs, and choose a finite string σs such that [σs] is not covered by (Tt)t∈Λs .

Case 1. Assume that for any g ∈ C(Q2, ω) following (Tt)t∈Λs (i.e., g−1{t} = Tt)
and satisfying [σs] ⊆ g−1{u} for some u ̸∈ Λs, if there is D ⊆ ψs(g) such that
⟨⟨τ, u⟩, D⟩ ∈ Φs (which declares [τ ] ⊆ f−1{u} for f = φs(D)), then τ does not
extend σs.

In this case, if we ensure h−1{u} = [σs] for a large u ̸∈ Λs, then for f = φsψs(h),
we have f−1{u} ̸= [σs]. This is because for any declaration [τ ] ⊆ f−1{u} by Φs,
we always have [τ ] ̸⊆ [σs], and f−1{u} must be the union of such [τ ]’s. Thus,
h ̸= φsψs(h).

Hence, choose a large u ̸∈ Λs, and put Tu = [σs]. If ⟨s⟩ is not covered by (Tt)t∈Λs ,
choose a large number v ̸∈ Λs, and define Tv = ⟨s⟩ \

∪
t∈Λs

Tt, which is a clopen set

as Λs is finite. Put Λs+1 = Λs ∪ {u, v}.

Case 2. Otherwise, there are g ∈ C(Q2, ω) following (Tt)t∈Λs and [σs] ⊆ g−1{u}
with u ̸∈ Λs and some D ⊆ ψs(g) such that ⟨⟨τ, u⟩, D⟩ ∈ Φs and τ extends σs.

In this case, choose such a g. By the property of a clopen basis of Q2 mentioned
above, [τ ] can be partitioned into an infinite set of basic clopen sets. Moreover, the
open set g−1{u} \ [τ ] can also be written as a countable union of basic clopen sets.
In particular, there is an infinite increasing sequence (Cn) of clopen sets such that

C0 ⊊ C1 ⊊ C2 ⊊ · · · → g−1{u},

and [τ ] ̸⊆ Cn for any n ∈ ω, where the arrow indicates that
∪
n Cn = g−1{u}.

Consider a name of g given by this slowly converging sequence (Cn). Then a finite
initial segment of such a name of g already witnesses D ⊆ ψs(g). So, except for
information on Λs, finitely many information (Tt)t∈F is used to ensure D ⊆ ψs(g),
where [τ ] ̸⊆ [Tu]. By extending a partial name, we can assume that (Tt)t∈Λs∪F is
pairwise disjoint. We choose such a (Tu)u∈F .

Hence, choose a large v ̸∈ Λs ∪ F , and define Tv and Λs+1 in the same manner
as Case 1. Note that if we ensure that h follows (Tt)t∈Λs+1 , then for f = φsψs(h),
[τ ] ⊆ f−1{u}, but [τ ] ̸⊆ h−1{u}; hence h ̸= φsψs(h). This verifies the first assertion
that there exists a C(Q, ω)-degree which is not an e-degree.

For the second assertion, note that C(Q, ω) is computably bi-embeddable to
C(Q) since C(Q, ω) ⊆ C(Q), and C(Q) is computably embedded into C(Q, ωω) ≃
C(Q×ω, ω) ≃ C(Q, ω). Therefore, C(Q) has the same degree structure as C(Q, ω),
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which can be computably embedded in to O(Q) by Corollary 1.4. This completes
the proof. □

2.4. Beyond O(ωω). It is known that every second-countable T0 space embeds
into O(ω). It is natural to ask if, whenever X and Y are second-countable and
T0, C(X,Y ) can be embedded into O(ωω). By Corollary 1.4, the function space
C(X,Y ) embeds into O(ω×X). As ω×X is also second-countable, to answer the
question, we only need to consider if O(X) embeds into O(ωω).

The key notion is the hierarchy of higher-order function spaces. For example, ω
is the space of type 0 functions, ωω is the space of type 1 functions, and C(ωω, ω) is
the space of type 2 functions, which can be embedded in O(ωω). This construction
of function spaces can be extended to higher types. To be explicit, the hierarchy of
function spaces is constructed as follows.

ω⟨0⟩ = ω, ω⟨k + 1⟩ = C(ω⟨k⟩, ω).

For example, ω⟨2⟩ = C(ωω, ω). These high-order function spaces are known as
the Kleene-Kreisel spaces, and their computability-theoretic properties have been
deeply studied; see [33, 25]. Here, note that the function space of type 2 or higher
is not second-countable.

There is a method for obtaining a second-countable space from a complicated
space. No matter what a represented space we consider, the space of all names of
points is a subspace of ωω, so it is particularly second-countable. It is expected that
the space of names in a complicated represented space will be a very complicated
second-countable space.

Indeed, de Brecht et al. [10, Proposition 7.13] showed that O(Name(ω⟨k + 1⟩))
does not (sequentially) embed into O(Name(ω⟨k⟩)) for any k > 0, where we use the
symbol Name(X) to denote the set of all names of points in X for a represented
space X; that is, Name(X) = {Name(x) : x ∈ X}. As Name(ω⟨k⟩) is a subspace of
ωω, it is second-countable and T0. We use this idea to show the following:

Theorem 2.29. There is a represented cb0 space X such that the O(X)-degree are
not covered by the O(ωω)-degrees.

Indeed, X = Name(ω⟨2⟩) is such a space, and moreover, the collection of all
O(Name(ω⟨2⟩))-degrees is strictly bigger than that of all O(ωω)-degrees.

Although the proof of de Brecht et al. [10, Proposition 7.13] does not work for
proving Theorem 2.29, we make use of other embeddability results in [10]. They
showed that ω⟨k+1⟩ sequentially embeds into O(Name(ω⟨k⟩)) (cf. [10, Theorem 7.4
and Corollary 7.10]). We give an effective direct proof of this fact.

Lemma 2.30. For any k ∈ ω, ω⟨k + 1⟩ computably embeds into O(Name(ω⟨k⟩)).
In particular, every ω⟨k + 1⟩-degree is an O(Name(ω⟨k⟩))-degree.

Proof. First, there is a computable homeomorphism i : ω × ω⟨k⟩ → ω⟨k⟩. For any
F ∈ ω⟨k + 1⟩, consider the following set (which is roughly the set of all names of
the graph of F ):

UF = {p ∈ ωω : p is a name of i(n, f) and F (f) = n for some (n, f) ∈ ω × ω⟨k⟩}.

Clearly, UF is an open subset of Name(ω⟨k⟩). It is not hard to see that F 7→ UF is
a computable embedding of ω⟨k+1⟩ into O(Name(ω⟨k⟩)) (cf. [10, Theorem 7.4]). □
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Figure 1. The relationship between degree structures

We shall use the following fact (essentially due to Dvornickov, cf. Normann [33,
Corollary 7.2]); see also Theorem 3.21 below.

Fact 3 (see also Theorem 3.21). There is an ω⟨3⟩-degree which is not an O(ωω)-
degree.

Proof of Theorem 2.29. By Fact 3, we have an ω⟨3⟩-degree d which is not anO(ωω)-
degree. Hence, by Lemma 2.30, such d is also an O(Name(ω⟨2⟩))-degree.

We next check that every O(ωω)-degree is an O(Name(ω⟨2⟩))-degree. Hoyrup
[14] showed that ωω is a computable retract of C(ωω, 2). By the same argument, it
is easy to see that ωω is a computable retract of ω⟨2⟩ = C(ωω, ω). Let (r, s) be a
computable section-retraction pair witnessing this fact. Let δ : Name(ω⟨2⟩) → ω⟨2⟩
be an admissible representation. Then, s : ωω → ω⟨2⟩ is tracked by a computable
realizer s̃ : ωω → Name(ω⟨2⟩), i.e., s = δ ◦ s̃. Now, it is easy to check that (s̃, r ◦ δ)
is a computable section-retraction pair witnessing that ωω is a computable retract
of Name(ω⟨2⟩). Hence, by Fact 1, O(ωω) is a computable retract of O(Name(ω⟨2⟩)).
This completes the proof. □

3. Function spaces

We next examine the degree structures of function spaces with T1 ranges. In the
first half of this section, we deal with second countable spaces. The spaces depicted
in the left half of Figure 1 are those dealt with in previous research [22], and this
article will also deal with the spaces appearing in the right half of Figure 1. One
of the main results of the first half of this section is that there is a C(ωcof)-degree
which is not cototal (Theorem 3.6).

The last half of this section deals with the degree structures of higher type
function spaces. One of the main results of the last half of this section is that
the third order space ω⟨2⟩ whose ground type is ω contains a functional whose
degree is quasiminimal w.r.t. e-degrees (Theorem 3.13). Similarly, the third order
space ωcof⟨2⟩ whose ground type is ωcof contains a functional which do not have an
e-degree (Theorem 3.18).

3.1. Lower topology: C(R<). Consider the function space on the lower space
ω<. Here, a point in ω< is a natural number, and a basic open set is of the form
[m,∞] = {n ∈ ω : n ≥ m} for some m ∈ ω. Note that a function f : ω< → ω<
is continuous iff it is non-decreasing. In this case, we can consider the following
network (see Section 1.3):

(∀n)(∀e) [e ≤ f(n) ↔ (∃d) [d ≤ n and ⟨d, e⟩ ∈ N ]].
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However, it is clear that ⟨d, e⟩ ∈ N just indicates that e ≤ f(d).

Proposition 3.1. The C(ω<)-degrees are exactly the e-degrees.

Proof. Every f ∈ C(ω<) has an e-degree since E = {⟨d, e⟩ : e ≤ f(d)} is a canonical
local network at f . Conversely, let A ⊆ ω be given. Define f(n) = 2n+ 1 if n ∈ A;
otherwise f(n) = 2n. We claim that Name(f) is ≡M -equivalent to Enum(A). For
≤M , before seeing n ∈ A, we enumerate ⟨n, i⟩ into N for any i ≤ 2n, and if we see
n ∈ A, enumerate ⟨n, 2n + 1⟩ ∈ N . Conversely, given an enumeration of a local
network N at f , if ⟨n, 2n+ 1⟩ is enumerated into N , then enumerate n ∈ A. □
Proposition 3.2. The C(R<)-degrees are exactly the e-degrees.

Proof. It is easy to see that the set of ⟨p, q⟩ such that x > p implies f(x) > q is a
canonical local network at f . Other direction is verified by a similar argument as
above. □
3.2. Telophase topology: C(ω̂TP ). Roughly speaking, the telophase space ω̂TP
looks like a “two-point compactification” of ω. This is the set ω∪{∞,∞⋆} endowed
with the topology generated by {{m}, [m,∞], [m,∞⋆] : m ∈ ω}, where [m,∞] =
{n ∈ ω : n ≥ m} ∪ {∞} and [m,∞⋆] = {n ∈ ω : n ≥ m} ∪ {∞⋆}. The (ω̂TP )

ω-
degrees have been studied in [22].

Proposition 3.3. The C(ω̂TP )-degrees are exactly the (ω̂TP )
ω-degrees.

Proof. For f ∈ C(ω̂TP ), the restriction f ↾ ω of f up to ω is exactly an element
of (ω̂TP )

ω. Except for this (ω̂TP )
ω-information, f only has two values f(∞) and

f(∞⋆). Note that every point in ω̂TP is computable, so the information on these
two computable values does not affect the degree of f ; that is, f ↾ ω ≡T f , where
the former is in (ω̂TP )

ω. □
3.3. Cofinite topology: C(ωcof). We now consider the function space on the
cofinite space ωcof . Note that a function f : ωcof → ωcof is continuous iff it is finite-
to-one or constant. This is because any singleton {c} is a closed set in ωcof , so if
f is continuous, f−1{c} is also closed, which is finite or ωcof . In this space, we can
consider the following network (see Section 1.3):

(∀n)(∀e) [f(n) ̸= e ↔ (∃D) [n ̸∈ D and ⟨D, e⟩ ∈ N ]].(5)

Proposition 3.4. Every C(ωcof)-degree has an e-degree. Indeed, the following set
Ef is a canonical local network at f :

Ef = {⟨D, e⟩ : f−1{e} ⊆ D}.

Proof. We first claim that Ef is a local network at f ; indeed, Ef satisfies the
condition (5). If f(n) = e, then n ∈ f−1{e}. Therefore, for any D, if ⟨D, e⟩ ∈ Ef
then f−1{e} ⊆ D, so n ∈ D. This means that if n ̸∈ D implies ⟨D, e⟩ ̸∈ Ef .
If f(n) ̸= e, then n ̸∈ f−1{e}, and therefore, there is D such that n ̸∈ D and
f−1{e} ⊆ D, which means ⟨D, e⟩ ∈ Ef .

We next show that Ef is canonical. Let N be a local network at f . If we
see ⟨Di, e⟩ ∈ N for finitely many i, then enumerate all ⟨C, e⟩ into E such that∩
iDi ⊆ C. It is clear that E ≤e N , and this procedure is independent of the

choice of N . We then claim that E = Ef .
To see E ⊆ Ef , assume that ⟨C, e⟩ is enumerated into E. In this case, ⟨Di, e⟩

for finitely many i are enumerated into N , and
∩
iDi ⊆ C. If n ∈ f−1{e}, then
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by the definition of a local network, ⟨Di, e⟩ ∈ N implies n ∈ Di, which also implies
that n ∈ C. Therefore, f−1{e} ⊆ C, and thus ⟨C, e⟩ ∈ Ef .

To see Ef ⊆ E, we first note that for any i ̸∈ f−1{e}, there is Di such that i ̸∈ Di

and ⟨Di, e⟩ ∈ N . Choose such Di for any i ̸∈ f−1{e}, and pick j ̸∈ f−1{e}. Let
{kj}j<s be an enumeration of Dj \f−1{e}. Since ⟨Di, e⟩ ∈ N implies f−1{e} ⊆ Di,
we clearly have f−1{e} = Dj ∩

∩
t<sDkt . Thus, by our definition of E, for any D

with f−1{e} ⊆ D, ⟨D, e⟩ is enumerated into E. □

The above shows that the space C(ωcof) is second-countable via the subbasis
BD,e = {f : f−1{e} ⊆ D}.

Remark. The space C(ωcof) is not T2 since any two open sets have an intersection.
To see this, given BD,d and BE,e, consider a function f such that f−1{d, e} = ∅.

Let us compare the degree structures of ωωcof and C(ωcof). First, we can confirm
that the latter is larger.

Proposition 3.5. Every ωωcof-degree is a C(ωcof)-degree.

Proof. Given g : ω → ω, define f(n) = ⟨n, g(n)⟩. Clearly, f−1{⟨n, k⟩} ⊆ {n}. Thus,
we start enumerating all ⟨d, ⟨n, k⟩⟩ with {n} ⊆ Dd. If we see g(n) ̸= k, we enumerate
⟨d, ⟨n, k⟩⟩ for all d. Hence, a canonical local network Ef of f is e-reducible to the
co-graph of g. Conversely, if ⟨d, ⟨n, k⟩⟩ with n ̸∈ Dd is enumerated into a network
E of f , then declare g(n) ̸= k. □

Recall that every graph-cototal degree is cototal [1]; that is, every ωωcof -degree
is an Amax(ω

<ω)-degree. The following shows that the C(ωcof)-degrees are quite
large, which do not included in the cototal degrees.

Theorem 3.6. There exists a ∅′′-computable C(ωcof)-degree which is not cototal.

Proof. We shall need to construct a function f : ω → ω (thought of as a point in
C(ωcof)) satisfying the requirements

Re : Nbase(f) = Φe (Ψe (Nbase(f)))

⇒ ω<ω \Ψe (Nbase(f)) is not a maximal antichain in ω<ω.

Here recall Nbase(f) = {⟨n,D⟩ : D is a finite set such that D ⊇ f−1{n}} and we
are identifying each Ψe (Nbase(f)) as a subset of ω<ω. This suffices to verify the
assertion since the Amax(ω

<ω)-degrees are exactly the cototal degrees, where note
that the space Amax(ω

<ω) can be thought of as a subspace of O(ω<ω) consisting
of the complements of maximal antichains in ω<ω.

We shall construct a ∅′′-enumeration of Nbase(f). For each stage s, we determine
a parameter ns+1 and a sequence Ls = (Lm)m<ns+1 of finite subsets of ω, where
n0 = 0 and L0 is the empty sequence. This is a list of declarations f−1{m} = Lm for
any m < ns+1. In other words, we only enumerate pairs ⟨m,D⟩ with Lm ⊆ D into
the set Nbase(f). In order to make f a total function, (Lm)m∈ω must eventually
be a partition of ω.

For a finite list L = (Lm)m∈I , we say that a set A ⊆ ω is L-consistent if, for
any m ∈ I, ⟨m,D⟩ ∈ A implies Lm ⊆ D. Note that an L-consistent finite set A
determines a finite list LA = (Lm)m∈I∪J extending L, where J is a finite set such
that I ∩ J = ∅. To be more explicit, if m ̸∈ I and ⟨m,D⟩ ∈ A for some D, then
define Lm =

∩
{D : ⟨m,D⟩ ∈ A}. Clearly, if A ⊆ Nbase(f) then f−1{m} ⊆ Lm.
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At stage s = 2e, we deal with enumeration operators Φ = Φe and Ψ = Ψe. The
following is the Rs-strategy:

Step 1. Let Lns be the set of all k < s such that k ̸∈ Lm for any m < ns. This
action guarantees that the union of Lm’s will eventually become ω.

Step 2. Put n = ns + 1. In a ∅′-computable manner, check whether there exist a
finite set E ⊆ ω<ω and an (Ls ∗Lns)-consistent finite set A satisfying the following
condition:

⟨n, ∅⟩ ∈ Ψ(E) and E ⊆ Φ(A).

Case 2a. If such E and A exist, let JA be the set of all values mentioned by A;
that is, JA = {m ∈ ω : ⟨m,D⟩ ∈ A for some D}. Then let L′ be the list obtained
by adding the declarations Lm = ∅ for any m ∈ JA with m > n to (Ls ∗Lns). Note
that L′ does not contain any declaration concerning f−1{n}. Then go to Step 3
below.

Verification. Assume that f follows the declarations by L′, and Φ(Ψ(Nbase(f))) =
Nbase(f) holds. If the strategy reaches Case 2a, we claim that f−1{n} = ∅ if
and only if E ⊆ Φ(Nbase(f)). If f−1{n} = ∅ then as f follows L′, we must
have A ⊆ Nbase(f). This is because if ⟨m,D⟩ ∈ A then Lm = ∅, which forces
f−1{m} = ∅, so ⟨m,C⟩ is enumerated into Nbase(f) for any finite set C; hence
⟨m,D⟩ ∈ Nbase(f). By monotonicity, A ⊆ Nbase(f) implies Φ(A) ⊆ Φ(Nbase(f)),
so we get E ⊆ Φ(Nbase(f)) by our construction. Conversely, if E ⊆ Φ(Nbase(f))
then ⟨n, ∅⟩ ∈ Ψ(E) ⊆ Ψ(Φ(Nbase(f))). Thus, if Ψ(Φ(Nbase(f))) = Nbase(f) then
we must have f−1{n} = ∅.

Case 2b. If no such E and A exist, add the new declaration Ln = ∅, which forces
f−1{n} = ∅. Put ns+1 = ns + 2 and Ls+1 = Ls ∗ Lns ∗ Ln. Put Is+1 = Is. Then
go to the next stage s+ 1.

Verification. Assume that f follows the declarations by Ls+1. If the strategy reaches
Case 2b, as f follows Ls+1, any finite set A ⊆ Nbase(f) is (Ls ∗ Lns)-consistent.
Reaching Case 2b means ⟨n, ∅⟩ ̸∈ Ψ(E) for any finite set E ⊆ Φ(A). Hence, we
get ⟨n, ∅⟩ ̸∈ Ψ(Φ(Nbase(f))). This means that if Nbase(g) = Ψ(Φ(Nbase(f))) then
g−1{n} ̸= ∅. However, if f follows Ls+1 then we must have f−1{n} = ∅. Hence,
Nbase(f) ̸= Ψ(Φ(Nbase(f))), which fulfills the requirement Re.

Step 3. Let L′
0 be the list obtained by adding the declaration Ln = ∅ to L′,

which forces f−1{n} = ∅. Enumerate E (chosen in Case 2a) as {αi}i<k, and then
construct an increasing sequence L′

0 ⊆ L′
1 ⊆ · · · ⊆ L′

k of lists of declarations.
At each round i < k, in a ∅′′-computable manner, ask whether there exist a string

β ∈ ω<ω which is comparable with αi and an L′
i-consistent finite set B such that

β ̸∈ Φ(C) for any LB-consistent finite set C, where LB is the finite list extending
L′
i determined by B as mentioned above. If such β and B exist, put L′

i+1 = LB. If
i+ 1 < k, go to round i+ 1.

Case 3a. If such β and B exist for any i < k. Then let L′′ be the list obtained
by removing the declaration Ln = ∅ from L′

k, and instead adding the declaration
Ln = {a}, where a is a large fresh number, so L′′ declares f−1{n} = {a}.

Let ns+1 be the least number such that the mth term Lm in L′′ is undefined for
any m ≥ ns+1. For each m < ns+1, if Lm is undefined, then declare Lm = ∅. Let
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Ls+1 be the resulting list (Lm)m<ns+1 . Put Is+1 = Is. Then go to the next stage
s+ 1.

Verification. Assume that f follows the declarations by Ls+1, and Φ(Ψ(Nbase(f))) =
Nbase(f) holds. In particular, f follows L′, so as mentioned above, when we reach
Case 2a, it is ensured that f−1{n} = ∅ if and only if E ⊆ Φ(Nbase(f)). However,
f follows Ls+1, which forces f−1{n} = {a}, so we have E ̸⊆ Φ(Nbase(f)). Thus,
there must exist αi ∈ E such that αi ̸∈ Φ(Nbase(f)). Let β be a string chosen
in Case 3a. If β ∈ Φ(Nbase(f)) then there is a finite set C ⊆ Nbase(f) such that
β ∈ Φ(C). As f follows Ls+1, any finite set C ⊆ Nbase(f) is Ls+1-consistent, and in
particular, L′′-consistent since L′′ is a sublist of Ls+1. The only difference between
L′′ and L′

k is whether the nth term is {a} or ∅; however, {a} ⊆ D implies ∅ ⊆ D,
so L′′-consistency implies L′

k-consistency. Moreover, since L′
i+1 is a sublist of L′

k,
any finite C ⊆ Nbase(f) is L′

i+1-consistent. However, by our assumption, we must
have β ̸∈ Φ(C), which is impossible. Consequently, we obtain αi, β ̸∈ Φ(Nbase(f)).
This means that the complement of Φ(Nbase(f)) contains two comparable strings
αi and β, which means that this is not an antichain. Thus the requirement Re is
fulfilled.

Case 3b. If no such pair (β,B) exist for some i, let i(e) be the least such i, and put
α⋆e = αi(e). Let ns+1 be the least number such that the mth term Lm in L⋆e = L′

i(e)

is undefined for any m ≥ ns+1. For each m < ns+1, if Lm is undefined, then declare
Lm = ∅. Let Ls+1 be the resulting list (Lm)m<ns+1 . Put Is+1 = Is ∪ {e}. Then go
to the next stage s+ 1.

At stage s = 2e + 1, we continue the Re-strategy for each e ∈ Is. Note that Is
is the list of all e’s such that the Re-strategy reaches Case 3b. In this case, for any
β comparable with α⋆e and L⋆e-consistent finite set B, there exists an LB-consistent
finite set C such that β ∈ Φ(C).

Let B be the current approximation of Nbase(f), which must be Ls-consistent.
If necessary, we can guarantee that B determines Ls by slightly extending B. To
be more explicit, add ⟨m,Lm⟩ to B for each m < ns. Also, since L⋆e is a sublist of
Ls, B is L⋆e-consistent, and by our convention, LB extends Ls. Therefore, by our
assumption, for any β comparable with α⋆e, there exists an Ls-consistent set C that
satisfies β ∈ Φ(C).

Continue this procedure to extend the current approximation of Nbase(f) to an
Ls-consistent set C such that for each e ∈ Is, the first s strings that are comparable
to α⋆e are in Φ(C). Let ns+1 be a fresh value larger than any value mentioned by
C, and Ls+1 = (Lm)m<ns+1 be a suitable extension of Ls such that LC-consistency
implies Ls+1-consistency. Put Is+1 = Is. Then go to the next stage s+ 1.

Verification. Assume that f follows the declarations by Ls+1, and Φ(Ψ(Nbase(f))) =
Nbase(f) holds. Recall that the nth term of L⋆e is ∅, so this ensures f−1{n} = ∅
since f follows Ls+1 which extends L⋆e. As mentioned above, when we reach Case
2a, it is ensured that f−1{n} = ∅ if and only if E ⊆ Φ(Nbase(f)). Since α⋆e ∈ E,
we get α⋆e ∈ Φ(Nbase(f)). Now, by our construction, any string β comparable with
α⋆e is eventually enumerated into Φ(Nbase(f)). This means that the complement
of Φ(Nbase(f)) is not maximal. Thus the requirement Re is fulfilled. □

Remark. Let us comment on the topological properties of the space C(ωcof). The
space C(ωcof) is a Gδσ-space, that is, every closed set is Gδσ. To see this, note that
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[i;n] := {f : f(i) = n} is closed in C(ωcof), and therefore, {f : f(i) ̸= n} is Fσ since
it is of the form

∪
m ̸=n[i;m]. Hence, every basic open set BD,n = {f : f−1{n} ⊆ D}

can be written as
∩
d ̸∈D

∪
m ̸=n[i;m], which is Fσδ. However the relativization of

Theorem 3.6 shows that C(ωcof) is not a Gδ-space (since cototal degrees are degrees
of points in computably Gδ-spaces [22]).

3.4. Cofinite topology restricted to bounded functions: Cb(ωcof). Let Cb(ωcof)
be the subspace of C(ωcof) consisting of computably bounded functions, that is, the
set of all g such that g(n) < b(n) for some computable function b ∈ ωω.

Proposition 3.7. The Cb(ωcof)-degrees are exactly the total enumeration degrees.

Proof. Let φ be a total computable function and X = NbaseCb(ωcof )(f) for some
f ∈ ωω where f(x) ≤ φ(x) for every x. Define A by the following. For each finite
set D and each i ∈ ω, we let ⟨D, i⟩ ∈ A if and only if there exists some finite set E
and some k ∈ E \D such that ⟨E, i⟩ ∈ X, and for every j ̸= i and j ≤ φ(k), there
exists some finite Dj such that k ̸∈ Dj and ⟨Dj , j⟩ ∈ X. Clearly, A ≤e X. We
claim that A = Xc. Fix a D and i. If ⟨D, i⟩ ∈ X ∩A, then f(k) ̸= i as ⟨D, i⟩ ∈ X.
However f(k) must be ≤ φ(k), but then ⟨Df(k), f(k)⟩ ∈ X, which is impossible.

On the other hand, if ⟨D, i⟩ ̸∈ X, then f−1{i} must contain some k ̸∈ D. Hence
⟨D, i⟩ ∈ A, where we can take E = f−1{i}. This shows that A = Xc, and hence
Xc ≤e X.

Conversely, given A ⊆ ω, consider the function f(n) = 2n if n ∈ A and f(n) =
2n+ 1 if n ̸∈ A. □

In view of Proposition 3.7 we will consider a more general notion of being
“computably bounded”. Let CA(ωcof) be the subspace of C(ωcof) consisting of
A-computably bounded functions, that is, the set of all g such that g(n) < b(n) for
some A-computable function b ∈ ωω. Similarly, let (ωωco)A (CA(ω, ωcof), resp.) be
the subspace of ωωco (C(ω, ωcof), resp.) consisting of all A-computably bounded
functions.

Observation 3.8. For any A, (ωωco)A computably embeds into CA(ω, ωcof), and
CA(ω, ωcof) computably embeds into CA(ωcof). In particular, there is a quasi-
minimal C∅′(ωcof)-degree.

Proof. Two embeddings are given by x 7→ λn.x ↾ n and g 7→ λn.⟨n, g(n)⟩. See
also Proposition 3.5. For the second assertion, it is not hard to see that there is
a ∅′-computably bounded x ∈ ωωco which is quasi-minimal, by using the property
that every two open sets in ωωco intersect; see [22]. □

Proposition 3.9. For any A, there is a continuous degree which is not a CA(ωcof)-
degree. There is a C∅′(ωcof)-degree which is not a continuous degree.

Proof. For any g ∈ CA(ωcof), one can show that g ⊕ A is total as in the proof of
Proposition 3.7. This means that for any g ∈ CA(ωcof), if the lower cone {x ∈
ωω : x ≤T g} contains A then it is a principal Turing ideal. However, as proven by
Miller [31], every countable Scott ideal (i.e., ω-model of weak König’s lemma) is of
the form {x ∈ ωω : x ≤T f} for some f ∈ [0, 1]ω, and a Scott ideal is not principal.
This shows that there is a continuous degree which is not a CA(ωcof)-degree.

For the second assertion, there is no quasi-minimal continuous degree (see Miller
[31]) while there is a quasi-minimal C∅′(ωcof)-degree by Observation 3.8. □
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Proposition 3.10. For any A, there exists an (ωωco)A′-degree which is not a CA(ωcof)-
degree.

Proof. For any X, we construct an A′-computably bounded g ∈ ωωco which is not
X-computable, and for any h ∈ CA(ωcof), if h ≤T g then h is A-computable. At
stage s = (d, e), we ensure that if Φe(g) = h ∈ CA(ωcof) and h is bounded by φAd
then h is computable.

Let b ≤T A′ be a function dominating all partial A-computable functions. There
are two cases. First, assume that there exist infinitely many n such that for any
i < φAd (n) ↓, there is Eni such that Eni is consistent with gs, and ⟨D, i⟩ is enumerated
into Φe(E

n
i ) for some D ̸∋ n. In this case, let u(n) be the largest number mentioned

in (Eni )i<φA
d (n). Since u is a partial A-computable function, we have u(n) < b(n)

for almost all n. So let n be such that u(n) ↓ and u(n) < b(n). Then, there is a
b-bounded finite string g∗s extending gs consistent with (Ei)i<φA

d (n). This ensures

that for any i < φAd (n), there is D ̸∋ n such that ⟨D, i⟩ ∈ Φe(g), so, if h = Φe(g)
then h−1{i} ⊆ D ̸∋ n, which forces h(n) ≥ φAd (n).

If not, for almost all n, either φAd (n) ↑ or there is i < φAd (n) such that if E
is consistent with gs and ⟨D, i⟩ ∈ Φe(E) then n ∈ D. In this case, put g∗s = gs.
Assume that Φe(g) defines a function. Then note that we must have i = h(n). This
is because we have that h−1{i} ⊆ D imples n ∈ D by assumption, which implies
that h(n) = i.

Assume that φAd is total, and h = Φe(g) is bounded by φAd . Given n, if j ̸= h(n),
then there must exist (D,E) such that ⟨D, j⟩ ∈ Φe(E) and n ̸∈ D. As in the proof
of Proposition 3.7, it is not hard to show that h is A-computable.

We now want to ensure that g is not X-computable. Check if a sufficiently long
b-bounded string σ extending g∗s is enumerated into the s-th X-c.e. setWs(X), that
is, if Ws(X) computes an element g ∈ ωωco then g ̸∈ [σ]. If such σ exists, then put
gs+1 = σ. If such σ does not exist, then put gs+1 = g∗s . Here note that if Ws(X)
computes an element of ωωco, then it must enumerate an arbitrarily long b-bounded
string extending any given b-bounded finite string. Therefore, it is not hard to
verify that this strategy ensures that g is not X-computable. □

3.5. Cocylinder topology: C(ωωco, Y ). Now consider the cocylinder space ωωco.
A function f : ωωco → ωωco is continuous iff f−1[σ] is finitely generated (i.e., it is a
finite union of cylinders) for any σ ∈ ω<ω. In particular, f is continuous w.r.t. the
standard Baire topology on ωω. Hence, C(ωωco) is included in C(ωω) as a set.

In this space, we can consider the following network:

(∀x)(∀σ) [f(x) ̸≻ σ ↔ (∃D) [x ̸∈ [D] and ⟨D,σ⟩ ∈ N ]],

where [D] is the set of all x ∈ ωω extending some σ ∈ D.

Corollary 3.11. Every C(ωcof)-degree is a C(ωcof , ω
ω
co)-degree, and every C(ωcof , ω

ω
co)-

degree is a C(ωωco)-degree.

Proof. One can see that the map n⌢0ω 7→ n gives a computable retraction from
ωωco to ωcof . Hence, ωcof is a computable retract of ωωco. By Fact 1, C(ωcof) is a
computable retract of C(ωcof , ω

ω
co) and C(ωωco, ωcof), and moreover, the latter two

spaces are computable retracts of C(ωωco). This implies the assertion by Observation
2.17. □
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Proposition 3.12. The following set Ef is a canonical local network at f ∈
C(ωωco, ωcof):

Ef = {⟨D, e⟩ : f−1{e} ⊆ [D]}.
Similarly, the following set Ef is a canonical local network at f ∈ C(ωωco):

Ef = {⟨D,σ⟩ : f−1[σ] ⊆ [D]}.
Hence, every C(ωωco)-degree has an e-degree.

Proof. We only show the first assertion. We first claim that Ef is a local network
at f . If f(x) = e, then x ∈ f−1{e}. Therefore, for any D, if ⟨D, e⟩ ∈ Ef then
x ∈ [D]. If f(x) ̸= e, then by continuity of f , ωω \ f−1{e} = f−1[ω \ {e}] is an
open set containing x, and therefore, there is an open neighborhood U of x such
that x ⊆ U ⊆ ωω \ f−1{e}. There is such an U of the form ωω \ [D] for some finite
set D of strings. Then, x ̸∈ [D] and f−1{e} ⊆ [D], which means ⟨D, e⟩ ∈ Ef .

We next show that Ef is canonical. Let N be a local network of f . If we
see ⟨Di, e⟩ ∈ N for finitely many i, then enumerate all ⟨C, e⟩ into E such that∩
i[Di] ⊆ [C]. It is clear that E ≤e N , and this procedure is independent of the

choice of N . We then claim that E = Ef .
To see E ⊆ Ef , assume that ⟨C, e⟩ is enumerated into E. In this case, ⟨Di, e⟩ for

finitely many i are enumerated into N , and
∩
i[Di] ⊆ [C]. If x ∈ f−1{e}, then by

the definition of a local network, ⟨Di, e⟩ ∈ N implies x ∈ [Di], which also implies
that x ∈ C. Therefore, f−1{e} ⊆ C, and thus ⟨C, e⟩ ∈ Ef .

To see Ef ⊆ E, assume that f−1{e} ⊆ [D]. We first claim that there is C
such that ⟨C ∪D, e⟩ ∈ E, and every σ ∈ C is incomparable with any string in D.
Otherwise, ⟨D′, e⟩ ∈ N implies that D′ always contains a proper initial segment
of a string in D. Since there are only finitely many initial segments of strings in
D, there is σ ∈ D such that D′ always contains some τ ≺ σ. However, as N is a
network, it is impossible.

Now, fix such a C. We next claim that for any σ ∈ C, there is F such that
⟨F, e⟩ ∈ E and [F ] ∩ [σ] = ∅. Otherwise, fix an enumeration (Fn)n∈ω of all finite
sets such that ⟨Fn, e⟩ ∈ E. Define Gn =

∩
i≤n Fi, and then (Gn)n∈ω is a decreasing

sequence. Since ⟨Gn, e⟩ ∈ E, by our assumption, [Gn] ∩ [σ] ̸= ∅. Consider Hn =
{τ ∈ Gn : τ ⪰ σ}. It is not hard to see that every τ ∈ Hn+1 extends some string in
Hn. Therefore, the downward closure of

∪
nHn defines a finite branching tree T .

By König’s lemma, there is an infinite path x through T . Since x extends a string
in Hn, we have x ∈ [Gn]. As x ≻ σ ∈ C, by our choice of C, we have x ̸∈ [D], and
in particular, x ̸∈ f−1{e}. By our definition of Gn, there is no G such that x ̸∈ [G]
and ⟨G, σ⟩ ∈ N . A contradiction.

Consequently, for any σ ∈ C, there is F such that ⟨F, e⟩ ∈ E and [F ] ∩ [σ] = ∅.
As C is finite, there exists G such that ⟨G, e⟩ ∈ E and [G]∩ [C] = ∅. By our choice
of C, this concludes that ⟨D, e⟩ ∈ E.

The same argument applies to the second assertion. □

Note that the C(ωωco)-degrees are strictly smaller than the e-degrees, since C(ωωco)
is T1 (Section 1.3), and there is a T1-quasi-minimal e-degree [22].

3.6. Third order Baire space: C(ωω, Y ). Let us look at the degree structures
of higher order function spaces. Hinman [13] showed that the degree structure of
C(ωω, ω) is strictly larger than the total degrees. Kihara-Pauly [24] showed that
the degree structure of O(ωω) is strictly larger than the e-degrees. Here we show a
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much stronger result: Roughly speaking, there is a type 2 functional which has no
nontrivial “second countable information”.

Theorem 3.13. There exists a C(ωω, ω)-degree which is quasiminimal with respect
to all e-degrees.

Proof. We will define f ∈ C(ωω, ω) such that Name(f) contains no computable
member, and such that for every set A ⊆ ω, if Enum(A) ≤ Name(f) then A is c.e.
We wish to satisfy the following requirements:

Pe : If φe is total ⇒ φe ̸∈ Name(f).

Re : If Φe (Name(f)) ⊆ Enum(A) for some A ⇒ A is c.e.

The construction is a straightforward infinite injury argument. Our function f shall
have a very simple definition; at the end, we will build f such that for every n, either
f−1{2n} = [n] and f−1{2n+1} = ∅, or f−1{2n} = [n]− [τ ] and f−1{2n+1} = [τ ]
for some τ ⊃ [n]. (We can also make f {0, 1}-valued, but we choose the range of f
to be infinite to make notation simpler).

We define a computable approximation fs to f . At every stage s, and every n,
we let fs(n) = 0 represent the first alternative, and fs(n) = τ represent the second
alternative. Our approximation to f will initially start off with fs(n) = 0 and we
will make at most one change to fs(n) for each n. For each s, we let αs be the
“canonical” element of Name(fs) obtained by enumerating, for each n, ⟨σ, n⟩ for the
set of all minimal strings σ such that [σ] ⊆ f−1

s {n}. Another parameter which we
shall need during the construction is βs(τ0), where τ0 ⊃ k0, and k0 is an integer such
that fs(k0) = 0. This is the “slowed down” element of Name(fs) defined the following
way. βs(τ0) enumerates all elements of αs which are incomparable with [k0]. It also
enumerates, for each j ∈ ω, the element ⟨τ0⌢j, 2k0⟩. Finally, it also enumerates
⟨σ, 2k0⟩ for the set of all minimal strings σ ⊃ [k0] which are incomparable with τ0.
Obviously, βs(τ0) ∈ Name(fs), and βs(τ0) does not enumerate any initial segment
of τ0.

The reader unfamiliar with priority tree arguments can find a description of this
method in [42]. Our priority tree will be a subtree of the binary tree. We assign
the requirement Re to all nodes on level 2e, and the requirement Pe to nodes on
level 2e + 1. Each node assigned to an R-requirement shall have two outcomes,
∞ <L fin, while each node assigned to a P -requirement has only one outcome
0. Each node η assigned to a P -requirement shall have a parameter xη, where
it will try and meet its requirement with f ([xη]). A node η assigned to an R-
requirement shall define a c.e. set Wη and attempt to satisfy its requirement by
making Φe (Name(f)) ⊆ Enum(Wη).

Construction. At stage s, we define δs, the approximation to the true path of the
construction. As usual, we say that η is visited at stage s if δs ⊃ η. To initialize a
node means to reset all parameters associated with the node. At stage s, assume
that η ⊆ δs has been defined. If |η| < s we describe the actions taken by η.

Suppose η is assigned a P -requirement. If xη ↑ we pick a fresh new value for xη.
Otherwise, if xη ↓ but η is not yet satisfied, and φη has enumerated some element
⟨τ, 2xη⟩ for some τ ⊇ xη during the same stage as or before the previous visit to
η, we change fs(xη) from 0 to τ⌢j for a fresh number j. Declare η as now being
satisfied, and initialize all nodes extending η. Otherwise do nothing for η. Let
δs(|η|) = 0.
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Suppose instead that η is assigned an R-requirement. Let t < s be the previous
stage where we visited η⌢∞ (obviously t = 0 if no previous stage exists). Let
τ0, · · · , τn be a list of all nodes τ such that ⟨τ, 2xν⟩ has been enumerated by φν
during or before stage t, for some τ ⊇ xν and ν ⊇ η⌢∞ where ν is not yet satisfied.
(Obviously, for each ν, if φν has enumerated more than one such τ , consider only
the first τ to be enumerated by φν). If Φη (βs (τi)) has enumerated all (the finitely
many) elements of Wη,s for each i ≤ n, we take δs(|η|) = ∞, otherwise take
δs(|η|) = fin.

Finally, if |η| = s, we take δs = η, and initialize all nodes to the right of δs. If
no P -requirement has been declared satisfied at this stage, we do the following for
each η ⊂ δs such that η⌢∞ ⊆ δs and η is assigned an R-requirement. If there is a
smallest new element k ̸∈Wη,s such that k ∈ Φη(αs), we add k to Wη,s+1. If some
P -requirement has managed to become satisfied at this stage, we do not increase
W for any R-requirement and go to the next stage of the construction.

3.6.1. Verification. We now verify that the construction satisfies all requirements.
Let δ = lim infs δs be the true path of the construction. First of all, it is obvious
that each node on the true path is initialized only finitely often.

Now for each n, we argue that there are infinitely many s such that δ ↾ n is
visited at s and we increase W at (the end of) stage s. Suppose not. We eventually
never visit left of δ ↾ n, and all P -nodes η ⊂ δ ↾ n will eventually stop acting. This
means that eventually at every visit to δ ↾ n, some node η ⊃ δ ↾ n must be made
satisfied during that visit. But every time we satisfy some P -node η, we will also
at the same time initialize every node strictly extending or to the right of η. That
means that eventually, at some visit to δ ↾ n, every P -node along δs extending δ ↾ n
must have no follower assigned during that stage (or is already satisfied). At such
a stage, no P -requirement can be made satisfied, a contradiction.

We now argue that all P -requirements are satisfied along the true path. Fix a
P -node η ⊂ δ, and suppose that φη is total and in Name(f). Let xη be the final
follower picked by η. Since xη is picked fresh, and if η is never satisfied, then
fs(xη) = 0 for all s, which means that f ([xη]) = {2xη}. This means that η will
be declared satisfied at the second visit to η. We would also switch f(xη) = τ⌢j
for some τ and j such that ⟨τ, 2xη⟩ ∈ rng(φη), which means that φη cannot be in
Name(f) after all.

We now argue that all R-requirements are satisfied along the true path. Fix an
R-node η ⊂ δ and assume that there is some A such that Φe (Name(f)) ⊆ Enum(A).
We proceed in several steps:

(i) First we argue that for every s and every k ∈ Wη,s, k ∈ Φη(αs). We fix k
and proceed by an induction on s. When k is initially enumerated inWη,s+1

at the end of some stage s, we of course have k ∈ Φη(αs). Subsequently
f is only modified by a P -requirement extending η or to the right of η.
Nodes to the right of η⌢∞ pick their followers fresh after this, so their
actions cannot cause k to leave Φη(αs). If ν is a P -node extending η⌢∞
then ν only modifies f(xν) whenever η

⌢∞ is visited; at such a stage (and
owing to the fact that ν only modifies f(xν) the second time it is visited
after it first discovers that φν has enumerated some ⟨τ, 2xν⟩) we must have
k ∈ Φη(βs(τ)). At this stage ν is allowed to modify f(xν) = τ⌢j for a fresh
j. As j is fresh, it is much larger than any axiom involved in k ∈ Φη(βs(τ)),
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and since βs(τ) does not enumerate any initial segment of τ , this means
that after this modification to f we will still have k ∈ Φη(αs).

(ii) Next we argue that η⌢∞ ⊂ δ; suppose not. Then we visit η⌢∞ only finitely
often and the final value of t mentioned in the strategy for R exists. The
corresponding list of τ0, · · · , τn would also be stable (associated with the
nodes ν0, · · · , νn ⊇ η⌢∞). But as we never attend to any node extending
η⌢∞ after stage t, this means that f(xνi) = 0 for every i ≤ n. Therefore,
βs(τi) ∈ Name(fs) for every s and every i ≤ n. For each of the finitely many
k ∈Wη, and by item (i) above, k ∈ Φη (αs) for every s. Note that this fact
in itself is of course not enough to guarantee that k ∈ Φη (lims αs), but our
usual convention on the choice of fresh followers for a P -requirement will
ensure that this holds at the end. Since lims αs ∈ Name(f), this means that
k ∈ A. Since lims βs(τi) ∈ Name(f) for every i ≤ n, that means that k must
be enumerated by Φη (lims βs(τi)) for every i ≤ n. This must be witnessed
at a finite stage, a contradiction. (If t = 0, then Wη = ∅ and it is trivial).

(iii) Finally we argue that Wη = A. By (ii), η⌢∞ is along the true path.
Suppose k ∈ A. Then k ∈ Φη(αs) for all large enough s. But we have
already verified that there are infinitely many stages where η⌢∞ is visited
and Wη is increased. Hence k ∈ Wη. Now suppose that k ∈ Wη. Then by
item (i), k ∈ Φη(αs) for every s. This means that k ∈ A.

This ends the proof of Theorem 3.13. □
Remark. The above proof only uses the property mentioned in Observation 2.28.
Hence, our proof also shows that there exists a C(Q)-degree which is quasiminimal
with respect to all e-degrees.

Note that Theorem 3.13 implies an O(ωω)-degree which is quasiminimal w.r.t. e-
degrees by the following observation:

Observation 3.14. C(ωω, ω) ⊆ C(ωω, ωcof) ⊆ C(ωω, S).

Proof. For the first inclusion, one can see that C(ωω, ω) ⊆ C(ωω, 2ω) by Observa-
tion 1.3. Note that C(X × Y,Z) ≃ C(X,C(Y, Z)), where ≃ indicates that these
spaces are computably homeomorphic. Therefore, C(ωω, 2ω) ≃ C(ωω × ω, 2) ≃
C(ωω, 2) ≃ C(ωω, 2cof) ⊆ C(ωω, ωcof). Consequently C(ω

ω, ω) computably embeds
into C(ωω, ωcof). The second inclusion follows from Corollary 1.4. □

The above proof actually shows that if X is a higher-order Kleene-Kreisel space,
then C(X,ω) ⊆ C(X,ωcof) ⊆ C(X,S) holds. Note that C(X,ω) is Hausdorff,
C(X,ωcof) is T1, ω

ω
co ⊆ C(X,ωcof), and R< ⊆ C(X, S). Therefore, the inclusions are

proper (even in the degree-theoretic sense) since there are a C(ωω, ω)-quasiminimal
ωωco-degree, and a T1-quasiminimal R<-degree, by [22].

Now, we wish to investigate the “second countable fragment” of each properly
third order space. That is, given C(X,Y ), we wish to investigate the class of all sets
A such that Enum(A) = Name(F ) for some F ∈ C(X,Y ); in this case we say that
the space C(X,Y ) realizes the e-degree of A. For instance, it is easy to see that
O(ωω) realizes all e-degrees. On the other hand, there is an ωωco-degree which is
quasiminimal with respect to ω⟨2⟩ as mentioned in the previous paragraph. Hence,
it is natural to ask which e-degrees are realized by ω⟨2⟩.

Here, we give a partial result saying that there is a cone of ω⟨k⟩ which only
realizes total e-degrees.
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Proposition 3.15. There is r ∈ 2ω such that, for any k, if f ∈ ω⟨k⟩ computes r
and has an e-degree, then f has a total degree.

Proof. A topological space is quasi-zero-dimensional if it is the sequential core-
flection of a zero-dimensional space. Schröder [40] showed that the Kleene-Kreisel
space ω⟨k⟩ is quasi-zero-dimensional, and moreover, every qcb subspace of a quasi-
zero-dimensional qcb space is also quasi-zero-dimensional. Hence, every second-
countable subspace of ω⟨k⟩ is zero-dimensional as every second-countable space is
sequential. Assume that f ∈ ω⟨k⟩ has an e-degree, say f ≡T A ⊆ ω via Φ and
Ψ. Since SΦ,Ψ = {g ∈ ω⟨k⟩ : Φ ◦ Ψ(g) = g} is homeomorphic to a subspace of the
second-countable space O(ω), it is zero-dimensional by the above argument. More-
over, as SΦ,Ψ is a subspace of ω⟨k⟩, it is Hausdorff, and by zero-dimensionality,
indeed, it is metrizable. Therefore, SΦ,Ψ can be embedded into ωω. Hence, every
g ∈ SΦ,Ψ (in particular, f) has a total degree relative to some oracle rΦ,Ψ depending
on Φ and Ψ. Let r ∈ 2ω be the supremum (w.r.t. Turing reducibility) of all such
rΦ,Ψ for any pair Φ,Ψ. This implies that, if f ∈ ω⟨k⟩ has an e-degree, then f is
total relative to r, that is, f ⊕ r ≡T x for some x ∈ 2ω. □

An open question is to calculate the exact complexity of such an oracle r.

3.7. The third order space with cofinite topology: C(C(ωcof), ωcof). We here
generalize the construction of Kleene-Kreisel spaces. We define

X⟨0⟩ = X, X⟨n+ 1⟩ = C(X⟨n⟩, X)

for any n. We consider the type hierarchy over ground type X = ωcof . As we have
seen in Proposition 3.4, ωcof⟨1⟩ is a second countable space. Thus, we next consider
ωcof⟨2⟩. Note that N is a local network at F ∈ ωcof⟨2⟩ iff

(∀g)(∀n) [F (g) ̸= n ↔ (∃D = ⟨Ai, ai⟩i<k) ((∀i < k) g−1{ai} ⊆ Ai and ⟨D,n⟩ ∈ N)]

The equivalence inside the above square bracket can be rewritten as follows:

F (g) = n ↔ (∀D = ⟨Ai, ai⟩i<k) [⟨D,n⟩ ∈ N → (∃i < k) g−1{ai} ̸⊆ Ai].

Definition 3.16. We define G(A, a) = {g ∈ ωcof⟨1⟩ : g−1{a} ̸⊆ A}, and G(D) =∪
(A,a)∈D G(A, a).

Then, a name for F ∈ ωcof⟨2⟩ can be considered as an enumeration of basic
information ⟨D,n⟩ specifying F−1{n} ⊆ G(D).

Now, the difficulty is that a basic ωcof⟨1⟩-closed set G(D) is not ωω-clopen.
Indeed, G(D) is quite large, so that G(D)∩G(E) ̸= ∅ for any D and E. This means
that we cannot ensure that F−1{n} is of the form G(D) for all but one n.

We now need to consider what kind of sets are closed in ωcof⟨1⟩. For example,
[σ] = {g ∈ ωcof⟨1⟩ : σ ≺ g} is closed, since [σ] =

∩
i<|σ|

∩
e G(De \ {i}, σ(i)). Note

that we still have G(D) ∩ [σ] ̸= ∅. However, the point is that [σ] ⊆ G(D) for some
σ.

Observation 3.17. ωcof⟨1⟩ computably embeds into ωcof⟨2⟩.

Proof. Given g : ωcof⟨1⟩, define G(n ∗ x) = g(n). Then, g−1{n} ⊆ D if and only if
G−1{n} ⊆

∪
k∈D[k]. □

Kihara-Ng-Pauly [22] have shown that there is an (ωωco)-degree which is ω⟨k⟩-
quasiminimal for any k. Hence, by Proposition 3.5, there is an ωcof⟨1⟩-degree which
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is ω⟨k⟩-quasiminimal. Therefore, by Observation 3.17, we also have an ωcof⟨2⟩-
degree which is ω⟨k⟩-quasiminimal.

Theorem 3.18. There is an ωcof⟨2⟩-degree which is not an e-degree.

Proof. We will define H ∈ ωcof⟨2⟩, by declaring a sequence T = (Tk) of cylinders
such that H−1{k} = Tk.

Let ⟨Φs,Ψs⟩s∈ω be an enumeration of all pairs of partial computable functions.
At stage s, we attempt to ensure that ΦsΨs(H) ̸= H whenever Ψs(H) ∈ Sω.
Assume that we have constructed a co-infinite set Λs, and a sequence (Tt)t∈Λs of
cylinders, where we also assume that (Tt)t∈Λs covers {⟨r⟩}r<s, but have only finitely
many cylinders in the outside of {⟨r⟩}r<s. Let u be the least element not in Λs,
and choose σs which is not covered by (Tt)t∈Λs .

Case 1. Assume that for any G ∈ ωcof⟨2⟩ preserving the previous declaration, if
G−1{u} ⊆ [σs], and there is D ⊆ Ψs(G) such that ⟨E, u⟩ ∈ Φs(D), then [σs] ⊆
G(E).

In this case, put Tu = [σs∗0]. This ensures thatH−1{u} ⊊ [σs], which eventually
guarantees H ̸= ΦsΨs(H).

For the sake of totality of H, if ⟨s⟩ is not covered by (Tt)t∈Λs , let (τi)i∈ω be a
pairwise incomparable sequence of strings not covered by (Tt)t∈Λs and Tu, but the
union of Tu, {Tt}t∈Λs , and (τi)i∈ω covers ⟨s⟩. Choose a sparse infinite sequence
{vi}i∈ω ⊆ ω \ Λs, and define Tvn = [τn]. Put Λs+1 = Λs ∪ {u} ∪ {vi}i∈ω.

Case 2. Otherwise, there are G ∈ ωcof⟨2⟩ preserving (Tt)t∈Λs , G
−1{u} ⊆ [σs], and

some D ⊆ Ψs(G) such that ⟨E, u⟩ ∈ Φs(D) and [σs] ̸⊆ G(E).
In this case, choose such a G. Let k ̸= u be a large number which is not

mentioned in E. A name of G is a sequence ⟨Cj , nj⟩j∈ω. Let (t(i))i∈ω be an
increasing enumeration of all j’s such that nj = u, and define C∗

j,e = Cj ∪{⟨De, k⟩}
if nj = u. Then, we have

[σs] ∩
∩

⟨j,e⟩<i

G(C∗
t(j),e) ⊇ [σs] ∩

∩
⟨j,e⟩<i

G(De, k) ̸⊆ G(E)

for any i ∈ ω. Note that the last non-inclusion follows from the assumption that
[σs] ̸⊆ G(E) and k is not mentioned in E.

We now claim that G−1{u} = [σs] ∩
∩
j,e∈ω G(C∗

t(j),e). The inclusion ⊆ is clear

since we have G−1{u} =
∩
j G(Ct(j)) ⊆ [σs]. For the reverse inclusion ⊇, suppose

not. Then, there is g ∈ ωcof⟨1⟩ such that g ∈ [σs] and g ∈ G(C∗
t(j),e) for any

j, e ∈ ω, but g ̸∈ G(Ct(j)) for some j. Choose such an j. By our choice of g, we
have g ∈ G(Ct(j)) ∪ G(De, k), and therefore g ∈ G(De, k), for any e ∈ ω. Recall
that every g ∈ ωcof⟨1⟩ is either constant or finite-to-one. However, g ∈ G(De, k)
implies that g−1{k} ̸⊆ De, for any e ∈ ω, and therefore, g cannot be finite-to-one.
Consequently, g(i) = k for any i ∈ ω. However, as g ∈ [σs], we have g(i) = σs(i)
for any i < |σs|, but it is impossible since we also have σs(i) ̸= k. This verifies the
claim.

This procedure gives us an infinite decreasing sequence (Gn) of finitely generated
sets such that

G(A, a) = G0 ⊇ G1 ⊇ G2 ⊇ · · · → G−1{u},
and Gn ̸⊆ G(E) for any n ∈ ω, where the arrow indicates that

∩
n Gn = G−1{u}.

Consider a name of G given by this slowly converging sequence p = (Gn). Then a
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finite initial sequent of p already witnesses D ⊆ Ψs(G). So, except for information
on Λs, finitely many information (Tt)t∈F is used to ensure D ⊆ Ψs(h), where
[Tu] ̸⊆ [E]. By extending a partial name, we can assume that Tt is a cylinder for
each t ∈ F ∪ {u}, and that the collection (Tt)t∈Λs∪F is pairwise disjoint.

Choose (τi)i∈ω and {vi}i∈ω ⊆ ω \ Λs ∪ F in the same manner as Case 1. Define
Tvn = [τn], and put Λs+1 = Λs ∪ F ∪ {vi}i∈ω. □
3.8. Higher order spaces. As ω⟨k⟩ has a countable network, it is clearly separa-
ble. For effectivity, it is known that there is a primitive recursive sequence (qkn)n∈ω
which is dense in ω⟨k⟩ (see Normann [33, Chapter 5]). A trace of ψ ∈ ω⟨k + 1⟩ is
a function hψ : ω → ω defined by hψ(n) = ψ(qkn). By continuity of ψ ∈ ω⟨k + 1⟩,
one can show that the principal associate (which is a special kind of a name) of ψ
is computable in the jump of the trace hψ (see Normann [33, Theorem 5.15]). As
both the trace and the principal associate are elements of ωω, it is easy to conclude
the following:

Proposition 3.19. For any k, there is a continuous degree which is not an ω⟨k⟩-
degree. In particular, for any k > 0, the collection of R⟨k⟩-degrees are strictly larger
than the ω⟨k⟩-degrees.
Proof. Let ψ ∈ ω⟨k⟩ be given. As mentioned above, by Normann [33, Theorem
5.15], there are hψ, pψ ∈ ωω such that hψ ≤T ψ ≤T pψ ≤T h′ψ. In particular, the

lower cone {x ∈ ωω : x ≤T ψ} is not closed under the Turing jump. As mentioned in
the proof of Proposition 3.9, Miller [31] showed that every countable Scott ideal is of
the form {x ∈ ωω : x ≤T f} for some f ∈ [0, 1]ω. So take any countable jump ideal
(i.e., any Turing ideal closed under the Turing jump), which is in particular a Scott
ideal. This shows that there is a continuous degree which is not an ω⟨k⟩-degree.

For the second assertion, it is easy to check that [0, 1]ω ⊆ R⟨k⟩ for any k > 0. □
Recall that a topological space X is Γ-representable (cf. Schröder-Selivanov

[41]) if X has an admissible representation δ such that Eq(δ) = {(p, q) : p, q ∈
dom(δ) and δ(p) = δ(q)} is in Γ(ωω).

Let CB0(∆˜ 1
1) be the collection of all Borel-representable second-countable T0-

spaces, that is, the spaces which are homeomorphic to a Borel subset of the universal
second-countable T0-space Sω. Then, we define CB0⟨0⟩ = CB0(∆˜ 1

1), and let CB0⟨k+
1⟩ be the collection of the spaces of the form C(X,Y ) for some X,Y ∈ CB0⟨k⟩. For
instance, if X is a Borel-representable second-countable T0-space, then X⟨k⟩ ∈
CB0⟨k⟩. In particular, ω⟨k + 1⟩, ωcof⟨k + 1⟩ ∈ CB0⟨k⟩.
Proposition 3.20 (Schröder-Selivanov [41, Proposition 4.3]). For any 1 ≤ α <
ω1, if X is Σ˜ 1

α-representable, and if Y is Π˜ 1
α-representable, then C(X,Y ) is Π˜ 1

α-
representable.

In particular, for any k > 0, every CB0⟨k⟩-space is Π˜ 1
k-representable. □

Hinman [13] showed that there is an ω⟨2⟩-degree which is not an ω⟨1⟩-degree.
Then Dvornickov (cf. Normann [33, Corollary 7.2]) extended his result by showing
that for any k, there is an ω⟨k + 1⟩-degree which is not an ω⟨k⟩-degree.

Dvornickov’s proof of [33, Theorem 7.1] only uses the fact that the set of all
associates (i.e., names) of ψ ∈ ω⟨k − 1⟩ is Π˜ 1

k−2, which follows from the fact that

ω⟨k − 1⟩ is Π˜ 1
k−2-representable, and then applies a technical lemma [33, Lemma

5.31]. Hence, the proof is applicable for any Π˜ 1
k−2-representable space (indeed, any

Σ˜ 1
k−1-representable space), so it actually shows the following:
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Theorem 3.21. There is an ω⟨k + 2⟩-degree which is not an X-degree for any
Σ˜ 1
k+1-representable space X. In particular, there is an ω⟨k+2⟩-degree which is not

a CB0⟨k⟩-degree. □
As a corollary, we obtain an ω⟨k + 2⟩-degree which is not an ω⟨k + 1⟩-degree,

not an O(ω⟨k⟩)-degree, and so on.

3.9. Bounded linear operators. The function space construction plays a key role
in functional analysis. Thus, it is natural to ask if there is an example in functional
analysis whose degree structure is nontrivial. For instance, ℓ∞ is an important
example of a non-separable Banach space. Similarly, B(H), the space of bounded
linear operators on the infinite dimensional separable Hilbert space H = ℓ2, is also
non-separable w.r.t. the norm topology induced by the operator norm, since ℓ∞

isometrically embeds into B(H). Even though ℓ∞ and B(H) are non-separable
(w.r.t. the norm topology), there are known ways of handling with ℓ∞ and B(H)
in computability theory [5, 32].

First, ℓ∞ is known to be isometrically isomorphic to the dual (ℓ1)′ of ℓ1 by
Landau’s theorem. As a dual, one can introduce the weak∗ topology on ℓ∞ = (ℓ1)′,
which is separable, but not second-countable. Similarly, the most commonly-used
topology on the bounded linear operators, B(H), is not the norm topology, but the
strong operator topology. The strong operator topology on B(H) is separable, but
not second-countable.

Brattka-Schröder [5] showed that the co-restriction of the function space repre-
sentation to the dual of a represented separable Banach space is admissible w.r.t.
weak∗ topology. More generally, Neumann-Pape-Streicher [32] showed that, for
represented separable Banach spaces E and F , the co-restriction of the function
space representation to the bounded linear operators, B(E,F ), is admissible w.r.t.
the strong operator topology.

First we see that the dual of a computable normed space does not add a new
degree. Fix F ∈ {R,C}. Recall that the dual X ′ of a computable normed space
X is the space of bounded linear functionals f : X → F, whose representation is
inherited from the represented function space C(X,F).

Proposition 3.22. If X is a computable normed space, then every element of
the dual X ′ has a continuous degree. In particular, the ℓ∞-degrees are exactly the
continuous degrees.

Proof. Fix f ∈ X ′. Since f is bounded, there is b such that ||f || = sup||x||≤1 |f(x)| ≤
b. By the computable Banach-Alaoglu theorem (see [3]), the bounded ball BX′ =
{g ∈ X ′ : ||g|| ≤ b} is computably embedded into a computably compact metric
space as a Π0

1 subset. As f ∈ BX′ , this clearly implies that f has a continuous
degree. □

One can also show the similar result for B(H), whose representation is also
inherited from the represented function space C(H).

Proposition 3.23. The B(H)-degrees are exactly the continuous degrees.

Proof. Let {xn} be a computable dense sequence in H. Define a metric on the
unit ball on B(H) by d(S, T ) =

∑
n 2

−n||(S − T )xn||2. This metric is compatible
with the strong operator topology on B(H) on the unit ball [32]. The proof is
effective. □
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4. Π0
1 classes and Π0

1 singletons

4.1. Π0
1 singletons in C(ωcof). In this section, we investigate Π0

1 singletons in
function spaces. Here, a closed set in a represented space X is Π0

1 if its complement
is a computable point in O(X). We often identify a Π0

1 singleton with its unique
element; that is, it is x ∈ X such that X \ {x} is a computable point in O(X).
For X ∈ {2ω, ωω}, this notion has been studied in depth in classical computability
theory [35, Definition XII.2.13].

From a computability-theoretic perspective, giving a name of a Π0
1 singleton {x}

(in a second-countable space) is determining a point x by enumerating its negative
information, which may play an important role in understanding computability with
negative data. In addition, this notion has a topologically meaning: As pointed out
by Kihara-Pauly [24], the notion of a Π0

1 singleton can be understood as de Groot
dual in general topology; see also Section 4.2 (For example, ωcof is the de Groot
dual of ω).

We now discuss basis theorems for Π0
1 singletons in function spaces. A repre-

sented space X is Γ-named if the domain of its representation is in Γ. First, one can
easily generalize the known fact [35, Proposition XII.2.16] that every Π0

1 singleton
in ωω is hyperarithmetic as follows:

Proposition 4.1. Let X be a represented cb0 space which is Σ1
1-named. Then,

every Π0
1 singleton in X is hyperarithmetic.

Proof. Let (Bn)n∈ω be a computable basis ofX such that the domain of the induced
representation δ : ⊆ ωω → X is Σ1

1, that is, the set of all enumerations p of Nbase(x)
for some x ∈ X is Σ1

1. Let {x} be a Π0
1 singleton in X, and then there is computable

φ : ⊆ ωω → 1 such that z ∈ {x} iff for any (some) name p of z, φ(p) ↑. Thus, the
unique element x in {x} satisfies the following property:

x ∈ Bn ⇐⇒ (∀p) [if p ∈ dom(δ) and φ(p) ↑, then (∃i) p(i) = n]

⇐⇒ (∃p) [p ∈ dom(δ), φ(p) ↑ and (∃i) p(i) = n].

Clearly, the statement in the first line is Π1
1, and the second line is Σ1

1. Therefore,
Nbase(x) is ∆1

1. Consequently, x has a hyperarithmetical name. □

Corollary 4.2. Every Π0
1 singleton in C(ωcof) is hyperarithmetic. □

It is known that the degrees of Π0
1 singletons in the space ωω (i.e. C(ω)) is

cofinal in the hyperarithmetical hierarchy [35, Proposition XII.2.19]. If we consider
the subspace Cb(ω) of ωω consisting of computably bounded functions, it is clear
that every Π0

1 singleton in Cb(ω) is computable [35, Exercise XII.2.15 (c)]. On
the contrary, we show that the degrees of Π0

1 singletons in the space Cb(ωcof) of
computably bounded functions is cofinal in the hyperarithmetical hierarchy.

Theorem 4.3. For any computable ordinal α, there is a Π0
1 singleton {g} in

Cb(ωcof) such that ∅(α) ≤T g holds.

To show this, we need a few lemmas. Let S¬ be the negation of the Sierpiński
space, that is, ∅, {0}, {0, 1} are open. Then define Π˜ 0

1(X) = C(X,S¬). Note that
we view Π˜ 0

1(X) as the hyperspace of closed subsets of X by identifying a set with
its characteristic function.

Given a set P ⊆ X, and a function Q : X → Π˜ 0
1(Y ), define Q⋆P = {(x, y) : x ∈

P and y ∈ Q(x)}.
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Lemma 4.4. If P is Π0
1 in X, and Q : X → Π˜ 0

1(Y ) is computable, then Q ⋆ P is
Π0

1 in X × Y .

Proof. Let φ be a computable realizer of P , and ψ be a computable realizer of Q.
Given (p, q), wait for seeing that either φ(p) is rejected, or ψ(p)(q) is rejected. If this
happens, we reject (p, q). This procedure gives a computable realizer of Q ⋆ P . □

Recall that every point g ∈ C(ωcof) is finite-to-one. Note that even if gn is
finite-to-one for any n ∈ ω, the join

⊕
n gn(⟨u, v⟩) = gu(v) is not necessarily finite-

to-one. Instead, we consider ⊔ngn defined by (⊔ngn)(⟨u, v⟩) = ⟨u, gu(v)⟩. It is clear
that ⊔ngn is finite-to-one (computably bounded, resp.) whenever gn is finite-to-one
(computably bounded, resp.) for any n ∈ ω.

Lemma 4.5. If (Pn)n∈ω is a computable sequence of Π0
1 singletons in C(ωcof), then

{⊔ngn : (∀n) gn ∈ Pn} is also Π0
1 in C(ωcof).

Proof. Assume that Pn is of the form
∩
D∈Fn

G(D) for a c.e. set Fn uniformly in

n ∈ ω. Our basic idea is, for (A, a) ∈ D ∈ Fn, instead of considering G(A, a) = {g :
g−1{a} ̸⊆ A}, to consider the following for any s:

g−1{⟨n, a⟩} ̸⊆ {⟨n, i⟩ : i ∈ A} ∪ {⟨m, i⟩ : m ̸= n and ⟨m, i⟩ < s}.

Note that requiring g to satisfy the above condition for any s eventually forces
g−1{⟨n, a⟩} ̸⊆ {⟨n, i⟩ : i ∈ A} by finite-to-oneness of g. Below we give a precise
description of this idea.

Let (Dn
k )k∈ω be a computable enumeration of Fn. Recall that Dn

k is a finite
sequence (Ank,j , a

n
k,j)j<ℓ. Then, we define Bn,sk,j = {⟨n, i⟩ : i ∈ Ank,j} ∪ {⟨m, i⟩ : m ̸=

n and ⟨m, i⟩ < s}. Then, define En,sk = (Bn,sk,j , ⟨n, ank,j⟩)j<ℓ.
We will show that

∩
n,s,k G(E

n,s
k ) = {⊔ngn : (∀n) gn ∈ Pn}. Clearly, ⊔ngn ∈

G(En,sk ) whenever gn ∈ Pn for all n. For any n, k, by pigeonhole principle, there is
j such that g ∈ G(Bn,sk,j , ⟨n, ank,j⟩) for infinitely many s. That is, g(⟨m, i⟩) = ⟨n, ank,j⟩
for some ⟨m, i⟩ ̸∈ Bn,sk,j . Note that

⟨m, i⟩ ̸∈ Bn,sk,j ⇐⇒ (m = n → i ̸∈ Ank,j) and (m ̸= n → ⟨m, i⟩ ≥ s).

We claim that g(⟨n, i⟩) = ⟨n, ank,j⟩ for some i ̸∈ Ank,j . Otherwise, for infinitely

many s, we must have g(⟨m, i⟩) = ⟨n, ank,j⟩ for some ⟨m, i⟩ ≥ s. However, this
contradicts the fact that g is finite-to-one.

Define gn(i) as the second coordinate of g(⟨n, i⟩). Then, for any n, k, there is
j such that, by the above claim, gn(i) = ank,j for some i ̸∈ Ank,j . This means that
gn ∈ Pn.

It remains to show that g = ⊔ngn. Otherwise, there are n, k such that g(⟨n, k⟩) =
⟨m, a⟩ for somem ̸= n. Define h(ℓ) = gn(ℓ) for any ℓ ̸= k and h(k) ̸= gn(k). Then h
is finite-to-one, and h ̸= gn. Note that h ∈ G(Ank,j , ank,j). This is because g(⟨n, i⟩) =
⟨n, ank,j⟩ for some i ̸∈ Ank,j as above; however we have m ̸= n and therefore i ̸= k,

so h(i) = gn(i) = ank,j . Hence, we get h ∈ Pn. However, h ̸= gn ∈ Pn, which
contradicts our assumption that Pn is a singleton. □

Lemma 4.6. If P is a Π0
1 singleton in C(ωcof)×C(ωcof), then {g⊔h : (g, h) ∈ P}

is also Π0
1 in C(ωcof).
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Proof. A basic open set in C(ωcof)×C(ωcof) is a set G(D,E) of the following form:

(g, h) ∈ G(D,E) ⇐⇒ [(∃(A, a) ∈ D) g−1{a} ̸⊆ A]

or [(∃(B, b) ∈ E) h−1{b} ̸⊆ B]

Then, instead of considering G(D,E), we consider the following for each s:

(g ⊔ h)−1{⟨0, a⟩} ̸⊆ {⟨0, i⟩ : i ∈ A} ∪ {⟨1, i⟩ : i < s}
or (g ⊔ h)−1{⟨1, b⟩} ̸⊆ {⟨1, i⟩ : i ∈ B} ∪ {⟨0, i⟩ : i < s}.

Now a straightforward modification of the proof of Lemma 4.5 shows the desired
assertion. □

Lemma 4.7. For any g ∈ ωω, one can effectively find a Π0
1(g) singleton {h} in

Cb(ωcof) such that g′ ≤T (g, h).

Proof. Given g, we describe an effective procedure to construct h by enumerating
a name of {h} in Cb(ωcof). We will also inductively define a parameter ℓe, which is
a height used to code g′(e).

At stage s, given e < s, assume that ℓe has already been defined. The e-th
strategy waits for g′(e) = 1. If not at the current stage s, then we guess h(ℓe) = 2ℓe
by enumerating (2ℓe, [0, s] \ {ℓe}), which indicates h−1{2ℓe} ̸⊆ [0, s] \ {ℓe}. Since
every point in C(ωcof) is finite-to-one, if we enumerate such a pair for any s, then
this eventually determines h(ℓe) = 2ℓe. If we see g′(e) = 1 at stage s, change
our guess to h(ℓe) = 2ℓe + 1 by enumerating (2ℓe + 1, [0, t] \ {ℓe}), which indicates
h−1{2ℓe+1} ̸⊆ [0, t]\{ℓe}, at any later stage t ≥ s. Moreover, determine h ↾ [ℓe, s],
say h(k) = 2k for ℓe < k < s, ensure h(s+ i) = 2ℓe+i+ g

′(e+ i)[s] for any i < s− e,
and injure all lower priority strategies by redefining ℓd as s+ d for e < d < s.

It is not hard to see that this computable procedure eventually determines a
singleton {h}. It is clear that h is computably bounded; indeed, we always have
h(n) ≤ 2n+1. Therefore, from any C(ωcof)-name of h, one can recover its positive
information as in the proof of Proposition 3.7. Note that h(ℓe) = 2ℓe + 1 if and
only if g′(e) = 1. Moreover, given ℓe, if h(ℓe) = 2ℓe then ℓe+1 = ℓe + 1; otherwise
by seeing the stage witnessing g′(e) = 1, one can compute ℓe+1. Hence, we can
recover (ℓe)e∈ω from (g, h). Consequently, we have g′ ≤T (g, h). □

Proof of Theorem 4.3. By Lemma 4.7, there is a Π0
1 singleton {g} in C(ωcof) such

that ∅′ ≤T g, where we always identify g in Cb(ωcof) with the same function in ωω

by Proposition 3.7. Indeed, Lemma 4.7 ensures that there is a computable function
Q : C(ωcof) → Π˜ 0

1(C(ωcof)) such that g′ ≤T ⟨g, h⟩, where Q(g) = {h}. Note that
Q ⋆ {g} = {(g, h)}, which is Π0

1 in C(ωcof) × C(ωcof) by Lemma 4.4. Since g and
h are finite-to-one, g ⊔ h is also finite-to-one. By Lemma 4.6, one can see that
{g ⊔ h} is Π0

1 in C(ωcof). Clearly, (g, h) ≡T g ⊔ h since they are total. Therefore,
∅′′ ≤T g ⊔ h, so we get a Π0

1 singleton in C(ωcof) which computes ∅′′.
By iterating this procedure, one can easily construct a computable sequence of

Π0
1 singletons {hn} in C(ωcof) such that ∅(n) ≤T hn. Then, by Lemma 4.5, {⊔nhn}

is also a Π0
1 singleton in C(ωcof), and by totality of the degree of ⊔nhn, it is clear

that
⊕

n hn ≤T ⊔nhn. Therefore, we now obtain a Π0
1 singleton in C(ωcof) which

computes ∅(ω). Now, iterate this construction along computable ordinals. □



DEGREE STRUCTURES OF FUNCTION SPACES 43

4.2. Hyperspace of open sets in C(ωcof). Now, it is natural to consider the
space of co-singletons X \ {x} ∈ O(X). Then a Π0

1 singleton can be understood as
a computable point in such a space. To be more precise, the de Groot dual Xd of a
T1-space X is the subspace of O(X) consisting of all co-singletons; see Kihara-Pauly
[24] for the background on this notion.

Example 4.8 ([24]). ωd ≃ ωcof , (ωcof)
d ≃ ω, and (ωωco)

d ≃ ωω. However, (ωω)d ̸≃
ωωco; indeed, (ω

ω)d is not second-countable.

Kihara-Pauly [24] has shown that there is a point in (ωω)d (i.e., a co-singleton
ωω \ {x} ∈ O(ωω)) which is quasi-minimal w.r.t. e-degrees by using the fact that
there is a Π0

1 singleton in ωω which is far from computable. By Theorem 4.3, we
now also know that there is a Π0

1 singleton in Cb(ωcof) (or C(ωcof)) which is far
from computable. Thus, one can apply the idea in [24] to show the following:

Theorem 4.9. There is a point in (Cb(ωcof))
d which is quasi-minimal w.r.t. e-

degrees.

For z ∈ ωω, we say that g : ω → ω is z-bounded-to-one if there is a z-computable
function b : ω → ω such that g−1{n} ⊆ [0, b(n)] for any n ∈ ω. We need the
following lemma:

Lemma 4.10. Let {h} be a Π0
1(z) singleton in Cb(ωcof). If h is z-bounded-to-one,

then h is z′-computable.

Proof. Fix a z-computable function b such that h−1{n} ⊆ [0, b(n)] for any n ∈ ω.
Let p be a z-computable name of {h} as a closed set in Cb(ωcof). That is, p specifies
a z-computable sequence (G(Di))i∈ω such that {h} =

∩
i G(Di). By b-boundedness,

note that h ∈ G(Di) iff

(∃(A, a) ∈ Di)(∃i ∈ [0, b(a)] \A) h(i) = a.

As each Di is finite, G(Di) determines an ωω-clopen set. Hence, P =
∩
i∈ω G(Di)

is a Π0
1(z) set in ωω. Since P = {h} is computably bounded, h must have a

z-computable ωω-name. From this name, it is easy to get a z′-computable C(ωcof)-
name of h. □

Proof of Theorem 4.9. We show that for a Π0
1(z) singleton {h}, if h is not z′′-

computable, and Y ≤T {h} for Y ∈ Sω, then Y is computable (or equivalently, Y
is c.e. as a subset of ω).

Suppose that Y ≤T {h} for some Y ∈ Sω. Let Ψ witness that Y ≤T {h}, that
is, for any name p of {h} as a closed set in C(ωcof), Ψ(p) enumerates all elements
of A. Recall that each name q of a closed set in C(ωcof) is a sequence (Di)i∈ω of
finite sets such that each (A, a) ∈ Di represents {g : g−1{a} ̸⊆ A}. Then we define
Dℓ
i,s = Di ∪ {([0, s], ℓ)}, and qℓ(⟨i, s⟩) = Dℓ

i,s. As in the proof of Lemma 4.5, one

can see that qℓ determines the same closed set as q.
First consider the case that there is ℓ ∈ ω such that for all q, Ψ(qℓ) only enu-

merates a subset of Y . In this case, since Ψ(pℓ) enumerates all elements of A for
any name p of {h}, by enumerating all computations of the form Ψ(qℓ), we obtain
a computable enumeration of Y , that is, Y is computable.

Then, we now assume that for every ℓ ∈ ω there is q such that Ψ(qℓ ↾ t) for
some t enumerates m ̸∈ Y . Note that such qℓ ↾ t does not extend to a name of
{h}. This means that there is ⟨i, s⟩ < t such that for any (A, a) ∈ Dℓ

i,s we have
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h−1{a} ⊆ A. In particular, h−1{ℓ} ⊆ [0, s] since ([0, s], ℓ) ∈ Dℓ
i,s. As s < t, we

also have h−1{ℓ} ⊆ [0, t]. Using Y ′, given ℓ one can compute such a t. Hence, h is
Y ′-bounded-to-one.

Since {h} is a Π0
1(z) singleton and Y ≤T {h}, Y is z-computable; hence Y ′

is z′-computable. By Lemma 4.10, this implies that h is z′′-computable. This
contradicts our choice of h. □

We can generalize the above result to show the following:

Theorem 4.11. There are points in (ωω)d and (Cb(ωcof))
d which are O(Q)-quasiminimal.

Proof. Suppose that {x}c = ωω \ {x} ∈ O(ωω) computes U ∈ O(Q) via Ψ. First
consider the case that there is ℓ ∈ ω such that for all p, if p(n) is longer than ℓ
for all n, then Ψ(p) only enumerates a subset of U . In this case, since there is
an O(ωω)-name of x consisting only of strings longer than ℓ, by enumerating all
computations of the form Ψ(p ↾ u) such that the length of p(n) is greater than ℓ
for all n < u, we obtain a computable name of U .

We now consider the second case: For every ℓ ∈ ω there is p such that p(n)
is longer than ℓ for all n and Ψ(p) enumerates some r ̸∈ U . Note that for such
p there must be n such that p(n) is of the form x ↾ k for some k > ℓ since, if
Ψ(p) enumerates an element r ̸∈ U , then there must be n such that p(n) ≺ x.
Moreover, if Ψ(p) enumerates r, then there is u ∈ ω such that Ψ(p ↾ u) enumerates
a rational open interval including r. Let (Es)s∈ω be an enumeration of all finite
sets {p(0), . . . , p(u− 1)} of finite strings such that Ψ(p ↾ u) enumerates an interval
including some r ̸∈ U . Note that for an effective enumeration (qn) of all rationals,
the set {n : qn ∈ Q \U} is computable in the jump of any name of U , and so is Es.

Then, for any s ∈ ω there is σ ∈ Es with σ ≺ x. Define ms = min{|σ| : σ ∈
Es}. By our assumption, (ms)s∈ω is unbounded. If maxt<smt < ms then define
gs(n) = max{σ(n) : σ ∈ Es} for any maxt<smt ≤ n < ms. This gives a function
g dominating x, and such a g is computable in the jump of any name of U . As g
dominates x, one can compute the ωω-name of x from g and any O(ωω)-name of
{x}c.

We now show that if {x} is a Π0
1(z) singleton (i.e., z is an O(ωω)-name of {x}c)

and x ̸≤T z′ then the second case never happens. Note that such an x exists for
any given z. As U ≤T {x}c, any name p of {x}c computes a name of U . Choose a
z-computable name of {x}c, which also computes a name of U . If the second case
of the above argument happens, then z′ computes a sequence (Es) and therefore
a function g dominating x. Hence, by the above argument, z′ computes x, which
contradicts our choice of x. Consequently, we always proceeds the first case, and
this implies that U is computable.

For OCb(ωcof), combine this argument and the proof of Theorem 4.9. □

5. Complexity issues

5.1. Complexity of network. Recall that a topological spaceX has an admissible
representation iff X is T0 and has a countable cs-network (and has a countable k-
network wheneverX is sequential) [39, 37]. We are now interested in the topological
complexity of such a network. If X is not second-countable, such a network cannot
be open. On the other hand, if such an X is regular, then it has a countable closed
cs-network. Moreover, it is known that the Kleene-Kreisel spaces have a countable
closed cs-network, where a Γ network is a network all of whose elements are in Γ.
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Proposition 5.1. For any k ∈ ω, ω⟨k⟩ has a countable closed cs-network.

Proof. By Normann [33, Lemma 3.13]. □

In general, even if a space has a countable cs-network, it does not necessarily
have a Borel cs-network.

Proposition 5.2. C(ωω, ωcof) does not have a countable Borel cs-network.

Proof. Recall that [σ, k] = {G ∈ C(ωω) : k ̸∈ G[σ]} yields a (standard) countable cs-
networkNst for C(ω

ω, ωcof). LetN be an arbitrary cs-network forX = C(ωω, ωcof).
Let S be the collection of all subsets of C(ωω, ωcof) which can be written as an
intersection of finite sets {[σi, ki]}i<ℓ of basic sets. Then consider a subnetwork
M = {N ∈ N : (∃A ∈ S) A ⊆ N}.

Claim. M forms a cs-network.

Proof. To see this, we again consider the admissible representation δ induced from
the standard cs-network Nst (not from N ) for X. Since δ : ⊆ ωω → X is continuous,
as in the proof of [38, Theorem 12], for any p ∈ dom(δ) and any open neighborhood
U of δ(p), one can see that there are N ∈ N and n such that δ[p ↾ n] ⊆ N ⊆ U .
Note that δ[p ↾ n] is an intersection of finite sets {[σi, ki]}i<ℓ of basic sets. Hence,
N ∈ M. □

By the above claim, an enumeration (Ni)i∈ω of M induces an admissible repre-
sentation δ′ of X. Since δ′ : ⊆ ωω → X is continuous, again by the proof of [38,
Theorem 12], for any p ∈ dom(δ) and any open neighborhood U of δ(p), there is
σ, k such that δ′[p ↾ n] ⊆ [σ, k] ⊆ U . In particular, we have N ∈ M such that∩
i<ℓ[τi, ji] ⊆ N ⊆ [σ, k].

Claim. N is not Borel.

Proof. Put m = max{|τi|, |σ| : i < ℓ}. Let A ⊆ ωω be a Π1
1 complete set. Then,

there is R such that x ∈ A iff for all h ∈ ωω there is n such that (h ↾ n, x ↾ n) ∈ R.
If n does not bound v such that (h ↾ v, x ↾ v) ∈ R, then we remove the n-th element
of ω \ {k} from Φx(ρ ∗ h ↾ n) for any ρ ∈ ωm. If n is the least number such that
(h ↾ n, x ↾ n) ∈ R, then choose a large number t > max{ji, k, n : i < ℓ}, and remove
all elements of ω \ {t} from Φx(ρ ∗ h ↾ n) for any ρ ∈ ωm. Note that Φx defines
Gx such that if x ̸∈ A then Gx(h) = k for all h, and if x ∈ A then there is h such
that Gx(ρ ∗ h) ̸∈ {ji, k : i < ℓ} for all ρ ∈ ωm. This implies that, if x ̸∈ A then
Gx ̸∈ [σ, k] ⊇ N , and if x ∈ A then Gx ∈

∩
i<ℓ[τi, ji] ⊆ N . Therefore, x ∈ A if and

only if Gx ∈ N . We always have Φ(x) := Φx ∈ dom(δ), and that x ∈ A if and only
if Φx ∈ (δ′)−1[N ].

Suppose that (δ′)−1[N ] = B ∩ dom(δ′). Since the range of Φ is contained in
dom(δ′), we have Φ−1[(δ′)−1[N ]] = Φ−1[B] = A. Hence, if B is Borel, so is A,
which contradicts Π1

1-completeness of A. Consequently, there is no such Borel set
B, and thus N is not Borel. □

Consequently, every countable cs-network for C(ωω, ωcof) contains a non-Borel
set. In other words, C(ωω, ωcof) has no countable Borel cs-network. □

One can extend this result to the second level of the projective hierarchy:

Proposition 5.3. C(ω⟨2⟩, ωcof) does not have a countable ∆˜ 1
2 cs-network.
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We need a lemma to prove this. Let δk is the standard admissible representation
of ω⟨k⟩. We say that η ∈ ω<ω is (n + 1)-nontrivial if δn+1[η] contains more than
one elements. In other words, η = (τi, ki)i<ℓ is (n + 1)-nontrivial iff τi is not an
empty string, and ki = kj whenever δn[τi] ∩ δn[τj ] is nonempty.

For ψ ∈ ω⟨2⟩, let hψ be the trace of ψ, that is, hψ(n) = ψ(σn ∗ 0ω), where
(σn)n∈ω is an enumeration of finite strings.

Lemma 5.4. Let B ⊆ ωω be a Π1
2 set, and η be a 2-nontrivial string. Then, there

is a primitive recursive predicate R such that

α ∈ B ⇐⇒ (∀ψ ∈ ω⟨2⟩)(∃n) R(α ↾ n, hψ ↾ n)
⇐⇒ (∀ψ ∈ δ2[η])(∃n) R(α ↾ n, hψ ↾ n).

Proof. Let η = (τi, ki)i<ℓ be a given 2-nontrivial string. By 2-nontriviality of η,
there are pairwise incomparable strings λ, λ′ ∈

∪
i<ℓ[τi]. Let A ⊆ ωω be a Π1

1

set such that α ̸∈ B ⇐⇒ (∃β) ⟨α, β⟩ ∈ A. Then there is a primitive recursive
predicate S such that

(∃β) ⟨α, β⟩ ∈ A ⇐⇒ (∃β ∈ ωω)(∀x ∈ ωω)(∃n) S(α ↾ n, β ↾ n, x ↾ n).
Note that if the latter condition holds, one can define ψ(λ ∗ x) = x ↾ n for the

least n such that S(α ↾ n, β ↾ n, x ↾ n), ψ(λ′ ∗ i ∗ x) = β(i), and ψ(τi ∗ x) = ki for
any x ∈ ωω, and ψ(y) = 0 for other y. Clearly, ψ ∈ δ2[η].

By considering this ψ, one can construct a primitive recursive predicate R en-
suring the following equivalences:

(∃β) ⟨α, β⟩ ∈ A ⇐⇒ (∃ψ ∈ ω⟨2⟩)(∀n) R(α ↾ n, hψ ↾ n)
⇐⇒ (∃ψ ∈ δ2[η])(∀n) R(α ↾ n, hψ ↾ n).

More explicitly, let sσ and ti be indices such that hψ(sσ) = ψ(λσ0ω) and hψ(ti) =
ψ(λ′i0ω). Then, define R(u, v) by (∃σ < |v|) S(u, v(ti)i<|v(sσ)|, v(sσ)). Clearly, R
is primitive recursive, and it is not hard to check that this predicate has the desired
property. This completes the proof. □

Proof of Proposition 5.3. Let δ2 be an admissible representation of ω⟨2⟩. Recall
that

[σ,m] = {G ∈ C(ω⟨2⟩, ωcof) : (∀x ∈ δ2[σ]) m ̸∈ G(x)}
yields a (standard) countable cs-network Nst for C(ω⟨2⟩, ωcof). Let N be an arbi-
trary cs-network for X = C(ω⟨2⟩, ωcof). As in the proof of Proposition 5.2, we have
N ∈ N such that

∩
i<ℓ[τi, ji] ⊆ N ⊆ [σ,m]. Moreover, one can assume that σ is

2-nontrivial by choosing U in Proposition 5.2 as a sufficiently small open set.

Claim. N is not ∆˜ 1
2.

Proof. Let B ⊆ ωω be a Π1
2 complete set. As σ is 2-nontrivial, choose a primitive

recursive predicate R as in Lemma 5.4.
Now, note that given a name of ψ ∈ ω⟨2⟩, one can effectively compute the total

information of the trace hψ, that is, one can compute the sequence (hψ(n))n∈ω in
this order. Let α ∈ ωω and a name p of ψ ∈ ω⟨2⟩ be given. If n does not bound
k such that (α ↾ k, hψ ↾ k) ∈ R, then we remove the n-th element of ω \ {k} from
Φx(p). If n is the least number such that (α ↾ n, hψ ↾ n) ∈ R, then choose a large
number t > max{ji, k, n : i < ℓ}, and remove all elements of ω \{t} from Φx(p). As
such an n is independent of the choice of a name p of ψ, the function Φx induces a
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function Gx : ω⟨2⟩ → ωcof . By our choice of R, if x ∈ A then Gx(ψ) ̸∈ {ji, k : i < ℓ}
for all ψ, and if x ̸∈ A then there is ψ ∈ δ2[σ] such that Gx(ψ) = k. This implies
that, if x ∈ A then Gx ∈

∩
i<ℓ[τi, ji] ⊆ N , and if x ̸∈ A then Gx ̸∈ [σ, k] ⊇ N .

Therefore, x ∈ A if and only if Gx ∈ N . We always have Φ(x) := Φx ∈ dom(δ),
and that x ∈ A if and only if Φx ∈ (δ′)−1[N ].

Suppose that (δ′)−1[N ] = B ∩ dom(δ′). Since the range of Φ is contained in
dom(δ′), we have Φ−1[(δ′)−1[N ]] = Φ−1[B] = A. Hence, if B is ∆˜ 1

2, so is A, which
contradicts Π1

2-completeness of A. Consequently, there is no such ∆˜ 1
2 set B, and

thus N is not ∆˜ 1
2. □

Consequently, every countable cs-network for C(ωω, ωcof) contains a non-∆˜ 1
2 set.

In other words, C(ωω, ωcof) has no countable ∆˜ 1
2 cs-network. □

A similar argument also shows the following:

Proposition 5.5. The hyperspace O(ωω) has no countable Borel cs-network, and
the hyperspace O(ω⟨2⟩) has no countable ∆˜ 1

2 cs-network. □

For a space X represented by δ, a set S ⊆ X is Γ-realized if the set of all names
of points in S is Γ in the set of all names of points in X (w.r.t. the Baire topology
on the names); that is, δ−1[S] is Γ in dom(δ). If Γ is a topological pointclass, then
every Γ set is Γ-realized; however the converse is not necessarily true. For instance,
Hoyrup [14] showed that there is a Σ0

2-realized subset of O(ωω) which is not Borel.

Proposition 5.6. Every CB0⟨k⟩-space has a countable Π˜ 1
k-realized cs-network.

Proof. Let C(X,Y ) be a CB⟨k+1⟩ space. Then one can assume that X is a CB⟨k⟩
space, and Y is a CB⟨0⟩ space, i.e., a T0-space with a countable basis (Be)e∈ω.
By induction hypothesis, let (Nd)d∈ω be a countable Π˜ 1

k-realized cs-network for
X. Then define MD,e be the set of all f such that if x ∈ Nd for any d ∈ D
then f(x) ∈ Be. We claim that (MDe

) is a countable Π˜ 1
k+1-realized cs-network for

C(X,Y ). A name p of a point in C(X,Y ) is a point in MD,e if and only if for any
name q of a point in

∩
d∈DNd, an initial segment of p accepts an initial segment of

q and enumerates e. By induction hypothesis, being a name of a point in
∩
d∈DNd

is a Π˜ 1
k property. Therefore, it is easy to check that the above condition is a Π˜ 1

k+1

property. □

Note that our proofs actually show the realized versions of Propositions 5.2, 5.3,
and 5.5. For instance, the hyperspace O(ωω) has no countable Borel-realized cs-
network. On the other hand, by Proposition 5.6, O(ωω) has a countable Π1

1-realized
cs-network.

5.2. Distance from total degrees. The argument in the beginning of Section 5
suggests that every ω⟨k⟩-degree is arithmetically equivalent to a total degree. One
can also see that every point x in a CB0-space is arithmetically equivalent to the
jump of x (which is total). Here, a reasonable definition of a jump is one that uses
an enumeration (UXe )e∈ω of all effectively open sets in the space X. That is, for a
point x in X, the jump x′(e) is given by the truth value of x ∈ UXe ; see e.g. [12].
However, Hoyrup [14] showed that, for any k ≥ 2, the computable open subsets of
ω⟨k⟩ are not Σ1

k-enumerable. Here, we say that S ⊆ X is Γ-enumerable if S is a
computable image of some Γ subset of ω. Hence, we do not have the appropriate
notion of the jump for CB0⟨k⟩-space for k > 0.
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We first see that if a space X has a countable hyperarithmetical cs-network, then
every point x ∈ X is hyperarithmetically equivalent to a total degree (which is a
degree of the principal associate of x).

Observation 5.7. Let X be a space having a countable ∆0
1+α cs-network, and

consider the induced representation of X. Then for any x ∈ X there is z ∈ 2ω

(i.e., a point of total degree) such that one can effectively find a pair of computable
functionals Φ,Ψ witnessing the equivalence p(α) ≡T z for any name p of x.

Proof. Let N = (Ne)e∈ω be a countable ∆0
1+α cs-network of X, and let δ be the

induced representation. Note that δ−1[Ne] is also ∆0
1+α in dom(δ). Therefore, for

any name p of x, the set z = {e ∈ ω : p ∈ δ−1[Ne]} is computable in p(α) uniformly
in p. Consider z as a point in 2ω. Then z has a total degree. Moreover, e ∈ z if
and only if x = δ(p) ∈ Ne, and therefore, z is independent of the choice of p, and
any enumeration of z is a name of x. □

It is clear that Observation 5.7 can be extended to any ∆1
n levels. For instance, if

a space X has a countable ∆1
2 cs-network, then every point x ∈ X is ∆1

2-equivalent
to a total degree.

We have seen in Proposition 5.5 that O(ωω) has no countable Borel cs-network.
Therefore, Observation 5.7 is not applicable for O(ωω). Indeed, one can show that
there is no uniform procedure witnessing that every U ∈ O(ωω) is hyperarithmeti-
cally equivalent to a point of total degree.

Proposition 5.8. There is no hyperarithmetical functionals Φ and Ψ such that,
for any U ∈ O(ωω), there is a point z of total degree such that Φ and Ψ witness
that p is hyperarithmetically equivalent to z for any name p of x.

Proof. Suppose not. Consider the whole space U = ωω, and then Ψ(U) = z and
Φ(z) = U . In particular, Ψ is injective. Let ψ be a realizer of Φ. Note that any
p ∈ ωω is a name of an open set Up, and therefore ψ is total. Then, p is a name of U
(that is, for all x ∈ ωω there is n such that p accepts x ↾ n; which is a Π1

1-complete
property) if and only if Ψ(Up) = z. Since ψ is ∆1

1-measurable, and {z} is closed in
2ω, the equality Ψ(Up) = z is a ∆1

1 property. This contradicts Π1
1-completeness of

the property that p is a name of U . □

5.3. Enumerability of open sets. Hoyrup [14] showed that the computable open
subsets of ωω×O(ωω) and C(ωω, 2) are neither Σ1

1-enumerable nor enumerable rel-
ative to any ∆1

1 oracle. A similar technique is applicable for showing the following:

Theorem 5.9. None of the following are Σ1
1-enumerable or enumerable relative to

any ∆1
1 oracle:

(1) The computable open subsets of C(Q).
(2) The computable open subsets of ωω × C(ωω, ωcof).
(3) The computable open subsets of ωω × ωcof⟨2⟩.

To show Theorem 5.9, we use the notion of a fixed-point free multifunction. A
multi-valued function (or simply a multifunction) h : X ⇒ X is fixed-point free if
there is no y ∈ h(y); see [14, 15]. Hoyrup [14] showed that OOωω and OC(ωω, 2)
admits a computable fixed-point free multifuncion. It is easy to extend Hoyrup’s
result as follows:
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Lemma 5.10. Let Y be a space which is nontrivial in the sense that Y has a
nonempty c.e. open set V ⊊ Y . Moreover, assume that C(ωω, Y ) has a computable
separable representation. Then, OC(ωω, Y ) admits a computable fixed-point free
multifunction.

Proof. The proof is almost identical to Hoyrup [14]. Consider a nonempty c.e. open
set V ⊊ Y , and fix z ∈ Y \ V . Given a name p of Up ∈ OC(ωω, Y ), we construct
α ∈ ωω such that Hp := {h ∈ C(ωω, Y ) : h(α) ∈ V } ̸= Up.

By brute-force, one can look for a finite string which is accepted by Up. Until
seeing such a finite string we guess that α = 0ω. Assume that we found such a
finite string at stage s. By computable separability, one can extend such a string
to a name of a point h in C(ωω, Y ). Then Up accepts such a name, i.e., h ∈ Up.

Now consider a slow name q of h such that the value of h on [0s] is not determined
at finite stages. (Such a q exists since [0s] can be partitioned into infinitely many
basic clopen sets.) The name q is also accepted by Up at some finite stage. Then,
one can find a largest clopen set C ⊊ [0s] such that the value of h on C is determined
by q up to this stage. One can effectively choose α ∈ [0s] \ C.

Define h̃(x) = h(x) if x ∈ [0s]c ∪ C, and h̃(x) = z if x ∈ [0s] \ C. Note that h̃ is

continuous: For any open set U , it is not hard to see that h̃−1[U ] = h−1[U ]∪ [0s]\C
if z ∈ U ; otherwise h̃−1[U ] = (h−1[U ] \ [0s]) ∪ (h−1[U ] ∩C) if z ̸∈ U . Thus, h̃−1[U ]
is open since h−1[U ] is open, and [0s] and C are clopen.

It is easy to see that we also have h̃ ∈ Up, and h̃(α) = z ̸∈ V . Therefore, we have

h̃ ̸∈ Hp, which implies that Hp ̸= Up as desired. □

Remark. The above proof only uses the property that every clopen set in ωω is
(effectively) partitioned into infinitely many clopen sets. Hence, by Observation
2.28, one can replace ωω with Q in the above proof.

Corollary 5.11. OC(ωω, ωcof) admits a computable fixed-point free multifunction.
Similarly, OC(Q) admits a computable fixed-point free multifunction.

A similar idea is applicable to show the existence of a computable fixed-point
free multifunction in O(ωcof⟨2⟩).

Lemma 5.12. The hyperspace O(ωcof⟨2⟩) admits a computable fixed-point free mul-
tifunction.

Proof. Given a name p of Up ∈ O(ωcof⟨2⟩), we construct α ∈ ωcof⟨1⟩ such that
Hp := {h ∈ ωcof⟨1⟩ : h(α) ̸= 0} ≠ Up.

By brute-force, one can look for a finite string σ which is accepted by Up. Until
seeing such a finite string, our candidate for α ∈ ωcof⟨1⟩ is 0ω, which is named by
declaring α−1{1} ⊆ ∅, α−1{2} ⊆ ∅, α−1{3} ⊆ ∅, . . . . Assume that we found such
a finite string σ at stage s. Then we have already declared α−1{1} ⊆ ∅, α−1{2} ⊆
∅, . . . , α−1{s} ⊆ ∅. Note that ωcof⟨2⟩ is computably separable since any partial
name is extended to a name of a constant function. Thus, one can extend σ to
a name of a constant function c in ωcof⟨2⟩. Then, Up accepts such a name, i.e.,
c ∈ Up.

Assume that c(x) = cj(x) = j for any x ∈ ωcof⟨1⟩. Then, consider the sequence
q0 = ({⟨[0, t], s + 1⟩}, k)t∈ω,k ̸=j , each of whose entry declares that if h−1{s + 1} ⊆
[0, t] then H(h) ̸= k. We also consider q1 = ({⟨∅, u⟩ : s + 1 ̸= u ≤ s + 2}, k)k ̸=j ,
each of whose entry declares that if h−1{u} = ∅ whenever s + 1 ̸= u ≤ s + 2 then



50 TAKAYUKI KIHARA AND KENG MENG NG

H(h) ̸= k. Let H be a function which is consistent with the declaration made by
the sequence q := q0 ⊕ q1.

Note that if h is not constant, then h is finite-to-one. Therefore, h−1{s + 1} ⊆
[0, t] for some t. Thus, by the declaration of q0, we have H(h) ̸= k for any k ̸= j.
However, the sequence q never declare H(h) ̸= j; thus H(h) = j. If h−1{s + 1} ̸⊆
[0, t] for some t, then hmust be the constant function cs+1 defined by cs+1(x) = s+1
for any x. In this case, h−1{u} = ∅ for any u ̸= s + 1. Thus, by the declaration
of q1, we have H(h) ̸= k for any k ̸= j. By the similar argument as above, we
have H(h) = j. This argument concludes that q is a name of the constant function
cj ∈ ωcof⟨2⟩.

As cj ∈ Up, a finite initial segment τ of p ⊕ q is accepted by Up. Let v be a
sufficiently large number which is not mentioned in such an initial segment. Then
our current name of α can be extended to a name of α satisfying that α(n) = 0 for
any n < v, and α(n + v) = n + s + 1 for any n ∈ ω by declaring α−1{0} ⊆ [0, v),
α−1{n+ s+ 1} ⊆ {n+ v} for any n ∈ ω.

We extend τ to a name rH of another function H ∈ ωcof⟨2⟩. Recall that the
partial name τ has already specified the following information:

H−1{k} ⊆ {h ∈ ωcof⟨1⟩ : h−1{s+ 1} ̸⊆ [0, t]} for j ̸= k < v and t < v,

H−1{k} ⊆
∪

u≤s+2
u̸=s+1

{h ∈ ωcof⟨1⟩ : h−1{u} ≠ ∅} for j ̸= k < v.

Note that any extension of α ↾ v+2 is included in the right-hand sets of the above
equations since α(v) = s + 1 and α(v + 1) = s + 2. Let (τi)i∈ω be a (repetition-
free) list of all finite strings of length v + 2, and assume that τ0 = α ↾ v + 2.
Recall from the observation before Theorem 3.18, the clopen set [τi] can be written
as an intersection of sets of the form G(D). Hence, one can extend τ to a name
rH declaring that H−1{0} = [α ↾ v + 2], H−1{k} = ∅ for any 0 < k < v, and
H−1{v + n} = [τn+1] for any n.

Since τ is already accepted by Up and rH extends τ , the name rH is also ac-
cepted by Up, i.e., H ∈ Up. On the other hand, H(α) = 0 implies that H ̸∈ Hp.
Consequently, we get that Hp ̸= Up as desired. □

Proof of Theorem 5.9. By Corollary 5.11, Lemma 5.12, and Hoyrup [14, Theorem
5.1]. □

6. Linear realizable reducibility

Andrews et al. [1] showed that an enumeration degree is graph-cototal (i.e., an
ωωcof -degree) if and only if it contains a cototal set A that reduces to ω \ A via a
unique axiom reduction Γ, that is, if n ∈ A then there is a unique D such that
(n,D) ∈ Γ and D ∩A = ∅. Moreover, such D can be assumed to be a singleton.

For nonempty oracles, we will call such a reduction as a linear reduction. More
precisely, for A,B ⊆ ω, we say that A is linearly reducible to B (A ≤lin B) if there
exists a uniform c.e. sequence (Vn)n∈ω such that for any n ∈ ω, if n ∈ A then
B ∩Vn is a singleton; otherwise, B ∩Vn = ∅. In this case, we also write A = V (B),
where V = (Vn)n∈ω. We rephrase the above result by [1] in this terminology: An
e-degree is graph-cototal if and only if it contains a set which is linearly reducible
to its complement.
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A linear reduction is exactly a partial function on Sω tracked by a linear func-
tion (in the context of linear logic) between suitable coherent spaces. The no-
tion of a linearly realizable function between spaces represented by coherent spaces
has been introduced by Matsumoto-Terui [27] and Matsumoto [26]. For instance,
Matsumoto-Terui [27] showed that a total function on R is linearly realizable (w.r.t.
the canonical representation of R) if and only if it is uniformly continuous.

Formally speaking, a coherent space is the set X of all cliques (complete sub-
graphs) of a reflexive graph (|X|, E). For coherent spaces X,Y , a map f : X → Y
is linear if it is monotone w.r.t. ⊆, and, whenever b ∈ f(x), there is a unique a ∈ x
such that b ∈ f({a}). We consider a trivial coherent space O whose underlying
graph is a countable infinite complete graph, that is, |O| = ω and E = ω2. Then,
cliques are subsets of ω, and computable monotone maps on O are enumeration
operators. We say that a partial map f on O is computable linear if it is an enu-
meration operator, and whenever x ∈ dom(f) and b ∈ f(x), there is a unique a ∈ x
such that b ∈ f({a}).

Observation 6.1. A ≤lin B iff there is a partial computable linear map f : ⊆ O →
O such that B ∈ dom(f) and f(B) = A.

An equivalence class w.r.t. ≤lin is called a lin-degree. We say that a lin-degree a
is graph-cototal if it contains the complement of the graph of a total function on ω.

Proposition 6.2. A lin-degree a is graph-cototal if and only if it contains A ∈ a
such that A ≤lin ω \A.

Proof. The following is just a careful analysis of the argument in Andrews et al.
[1]. For the forward direction, if G and G are the graph and the co-graph of a
total function on ω, then V(x,y) = {(x, z) : z ̸= y} gives a reduction witnessing

G ≤lin ω \G = G. For the reverse direction, given A ̸= ∅ with A ≤lin ω \ A via V ,
define g(a) = 0 if a ̸∈ A, and g(a) = d + 1 if a ∈ A and (ω \ A) ∩ Va = {d}. Note
that g(a) = d+1 if and only if d ∈ Va and d ̸∈ A by the uniqueness condition of V .
Let G be the co-graph of g. Clearly, Ta = {(a, 0)} witnesses A ≤lin G. Moreover,
define U(a,0) = {a} and if d ∈ Va then U(a,d+1) = {d}; otherwise U(a,d+1) = {p},
where p is a fixed element in A. It is easy to see that U witnesses G ≤lin A. □

We use L(X,Y ) to denote the space of all linearly realizable functions from X to
Y . We now consider the lin-degrees of various subspaces of Sω. Note that C(ω,X)
and L(ω,X) are the same as a represented space. Therefore, we use Xω to denote
either C(ω,X) or L(ω,X).

Define X⟨⟨0⟩⟩ = X and X⟨⟨n+1⟩⟩ = L(X⟨⟨n⟩⟩, X). We will see that the behavior
of X⟨⟨n⟩⟩ is quite different from X⟨n⟩. For X = ω, we identify a ∈ ω with {a} ∈ Sω.

Proposition 6.3. For any n ∈ ω, the ω⟨⟨n⟩⟩-lin-degrees are exactly the 2ω-lin-
degrees.

Proof. For n = 1, it is easy to check that (the graph G of) g ∈ ωω is lin-equivalent
to (the graph of) the characteristic function of G.

For n = 2, let V be a name of g ∈ ω⟨⟨2⟩⟩. Then, g(x) = n iff there is (ℓ, k) ∈ Vn
such that x(ℓ) = k. There is a unique ℓ satisfying the above condition for any
(some) x, n. Otherwise, there are (ℓ, k) ∈ Vn and (ℓ′, k′) ∈ Vn′ with ℓ ̸= ℓ′. In this
case, let x be such that x(ℓ) = k and x(ℓ′) = k′. Then this implies g(x) = n = n′,
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and it is witnessed by two axioms (ℓ, k), (ℓ′, k′) ∈ Vn, which contradicts with the
uniqueness condition.

We claim that, if g is not constant, such an ℓ is independent of the choice of V .
Suppose that there are two names V, V ′ of g with different witnesses ℓ ̸= ℓ′. Let
x, y such that g(x) ̸= g(y). Then we have (ℓ, x(ℓ)) ∈ Vg(x) and (ℓ′, y(ℓ′)) ∈ V ′

g(y). If

ℓ ̸= ℓ′ then there is z ∈ ωω such that z(ℓ) = x(ℓ) and z(ℓ′) = y(ℓ′). However, this
must imply that g(z) = g(x) and g(z) = g(y), a contradiction.

If g is constant, g is clearly computable, so we now assume that g is not constant.
Note that the above claim actually shows that a name of g is unique. Fix ℓ as above.
Then, define g ∈ ωω by g̃(k) = ⟨ℓ, n⟩. Let V be the unique name of g. Clearly,
⟨ℓ, k⟩ ∈ Vn if and only if g̃(k) = ⟨ℓ, n⟩. This implies that g ≡lin g̃. Hence, g has a
ωω-lin-degree. □

For c ≤ ω, we identify x ∈ cωcof with the complement of a graph of a total function
gx : ω → c. Although it does not represent “cofinite” anymore, we abuse notation
by writing ccof . It is clear that 2ω is (computably) linearly isomorphic to 2ωcof . If
c < ω, then cωcof is computably homeomorphic to 2ω, and so cωcof is not interesting at
all in the context of T -degrees; however we see that cωcof has nontrivial lin-degrees.

Proposition 6.4. For any c ≤ ω, there is a (c + 1)ωcof-lin-degree which is quasi-
minimal w.r.t. cωcof-lin-degrees.

Proof. Let g ∈ (c + 1)ω be sufficiently generic w.r.t. the standard Baire topology
on (c+ 1)ω. We show that g as a point in (c+ 1)ωcof which is quasi-minimal w.r.t.
cωcof -lin-degrees. Let σ be an initial segment of g, and let V = (Vi) be a uniform c.e.
sequence. First consider the case that there is n such that for any k < c there is
(mk, ak) ∈ V(n,k) which is consistent with σ, that is, if mk ≤ |σ| then ak = σ(mk).
In this case, there is a string τ extending σ such that (mk, τ(mk)) ∈ V(n,k). If

g ∈ (c + 1)ω extends such τ then for the co-graph G of g, (n, k) ∈ V (G) for any
k < c. Therefore, V (G) is not the co-graph of an element in cω. It remains to
consider the case that for any n, there is k < c such that if (mk, ak) is consistent
with σ then (mk, ak) ̸∈ V(n,k). Let g ∈ (c+ 1)ω be an extension of σ, and G be the

co-graph of g. If the above k is not unique for some n, then clearly V (G) is not
the co-graph of an element in cω. If the above k is unique for any n, then n 7→ k
is computable by waiting for a stage s such that for any j < c with j ̸= k, some
(m, a) consistent with σ in enumerated into V(n,j) by stage s. Note that V (G) must

be the co-graph of the computable function n 7→ k, and therefore V (G) is c.e. □

In particular, the collection of the graph-cototal-lin-degrees (i.e., ωωcof -lin-degrees)
strictly contains 2ω-lin-degrees. Hereafter, we identify a ∈ ωcof with ω \ {a} ∈ Sω.

Proposition 6.5. ωcof⟨⟨1⟩⟩ is a lin-subspace of ω⟨⟨1⟩⟩ = ωω consisting exactly of all
permutations on ω. Hence, the ωcof⟨⟨1⟩⟩-lin-degrees are exactly the 2ω-lin-degrees.

Proof. First, it is clear that every permutation on ω is linearly realizable as a
function on ωcof . Now, a linearly realizable function g : ωcof → ωcof is induced from
a uniform c.e. sequence (Vn)n∈ω. In other words, (Vn)n∈ω codes an ωcof⟨⟨1⟩⟩-name
of g. Note that g(a) ̸= n iff Vn contains some b ̸= a. In particular, a ∈ Vn declares
g−1{n} ⊆ {a}, which implies that g is injective unless g is constant.

We show that g has to be surjective. If not, there is d such that g(n) ̸= d for
any n. Then, Vd is nonempty, say a ∈ Vd. However, we also have g(a) ̸= d, and
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therefore, Vd contains some b ̸= a. We now have {a, b} ⊆ Vd. However, if k ̸∈ {a, b}
then g(k) ̸= c is witnessed by two axioms a ∈ Vd and b ∈ Vd, which contradicts
with the uniqueness condition. Consequently, g is a permutation on ω.

It remains to show that the inclusion map ωcof⟨⟨1⟩⟩ ⊆ ω⟨⟨1⟩⟩ is computably lin-
early realizable. We claim that g(a) = n if and only if a ∈ Vn. For the “only
if” direction, assume that g(a) = n. Since g is not constant, there is b such
that g(b) ̸= n. Therefore, we must have c ∈ Vn for some c ̸= b, which declares
g−1{n} ⊆ {c}. As g(a) = n, we have a = c, and thus, a ∈ Vn. For the “if”
direction, assume that a ∈ Vn. Suppose that g(a) ̸= n. Then we must have b ∈ Vn
for some b ̸= a. Let c ̸∈ {a, b}, and recall that c ∈ ωcof is identified with ω \ {c}.
Then {a, b} ⊆ (ω \ {c}) ∩ Vn, which contradicts with the uniqueness condition of
(Vn)n∈ω. Hence, g(a) = n. Consequently, given a name (Vn) of g, one can compute
the total information of g, and vice versa.

For the second assertion, let g be a total function on ω. Define g̃(n, 0) = (n, g(n)+
1), g̃(n, g(n)+1) = (n, 0), and g̃(n, j) = (n, j) for any j ̸∈ {0, g(n)+1}. Clearly, g̃ is
a permutation. It is easy to see that g ≤lin g̃ since g(n) = k iff g̃(n, 0) = (n, k+ 1).
To see that g̃ ≤lin g, note that g̃(n, 0) = (n, j + 1) and g̃(n, j + 1) = 0 if g(n) = j;
if g(n, j + 1) = j + 1 if g(n) = k for some k ̸= j. Thus, Vn,0,n,j+1 = {(n, j)},
Vn,j+1,n,0 = {(n, j)}, and Vn,j+1,n,j+1 = {(n, k) : k ̸= j} yield a reduction. Hence,
every total function g is lin-equivalent to a permutation g̃. Consequently, every
ωω-lin-degree is a ωcof⟨⟨1⟩⟩-lin-degree. □
Proposition 6.6. The ωcof⟨⟨2⟩⟩-lin-degrees are exactly the graph-cototal-lin-degrees.

Proof. For any g ∈ ωωcof , define ĝ(x) = g(x(0)). By Proposition 6.5, ωcof⟨⟨1⟩⟩ is a
lin-subspace of ω⟨⟨1⟩⟩ = ωω consisting exactly of all permutations on ω. For any
n, there is a permutation x on ω such that x(0) = n. Hence, it is easy to see that
ĝ ≡lin g. Therefore, every graph-cototal-lin-degree is an ωcof⟨⟨2⟩⟩-lin-degree.

Next, assume that g ∈ ωcof⟨⟨2⟩⟩, and let V be a name of g. If g is constant,
then it is computable. Therefore, we assume that g is not constant. Note that
(a, b), (a′, b′) ∈ Vn implies a = a′. Otherwise, for a permutation x on ω such
that x(a) = b and x(a′) = b′, the fact g(x) ̸= n is witnessed by two axioms
(a, b), (a′, b′) ∈ Vn, which contradicts the uniqueness condition. Moreover, as g is
not constant, Vn is nonempty. So, fix a unique an such that (an, b) ∈ Vn for some
b.

Note that there is a unique i such that if (an, b) ̸∈ Vn for some b then an = ai.
Suppose not. Then let ai ̸= aj be such that (ai, bi) ̸∈ Vi and (aj , bj) ̸∈ Vj . For a
permutation x on ω such that x(ai) = bi and x(aj) = bj , our choice of ai and aj
implies that g(x) = i and g(x) = j, a contradiction.

Let i be as above. It is easy to see that such an i is independent of the choice of
a name V of g. Given b, one can effectively construct a permutation xb on ω such
that xb(ai) = b. Define g̃(b) = g(xb). It is not hard to check that g̃ ≡lin g. Hence,
every ωcof⟨⟨2⟩⟩-lin-degree is graph-cototal. □

7. Open questions

We have shown that a C(ωcof)-degree is not necessarily cototal.

Question 1. Does every cototal degree have a C(ωcof)-degree?

We have not analyzed the differences in the degree structures of the four function
spaces C(ωcof), C(ω

ω
co, ωcof), C(ωcof , ω

ω
co), and C(ω

ω
co).
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Question 2. Does there exist a C(ωωco)-degree which is neither a C(ωωco, ωcof)-degree
nor a C(ωcof , ω

ω
co)-degree?

Question 3. Does there exist a C(ωωco, ωcof)-degree which is not a C(ωcof , ω
ω
co)-

degree?

Question 4. Does there exist a C(ωcof , ω
ω
co)-degree which is not a C(ωωco, ωcof)-

degree?

Question 5. Does ω⟨2⟩ contain a non-total e-degree?

As ωωcof ⊆ ωcof⟨1⟩ ⊆ ωcof⟨2⟩, we have an ωcof⟨2⟩-degree which is not an ω⟨2⟩-
degree.

Question 6. Does every ω⟨2⟩-degree an ωcof⟨2⟩-degree?

We have shown the existence of an ω⟨2⟩-degree which is quasimi-minimal w.r.t.
all e-degrees, an ω⟨2⟩-degree which is not an O(Q)-degree, and an O(ωω)-degree
which is O(Q)-quasiminimal.

Question 7. Does there exist an ω⟨2⟩-degree which is O(Q)-quasiminimal?

Question 8. Does there exist an ωcof⟨2⟩-degree which is quasiminimal w.r.t. all
e-degrees?

Question 9. Does there exist an ωcof⟨k+1⟩-degree which is not an ωcof⟨k⟩-degree?

To solve this question, one can first ask the following:

Question 10. Is the set of names of a point in ωcof⟨3⟩ Π1
2-complete?

The argument in the beginning of Section 5 suggests that every ω⟨k⟩-degree is
arithmetically equivalent to a total degree. One can also see that every point x in
a CB0-space is arithmetically equivalent to the jump of x (which is total), but we
do not have the notion of the jump for CB0⟨k⟩-space for k > 0.

Question 11. Does there exists a CB0⟨1⟩-degree which is not arithmetically equiv-
alent to a CB0⟨0⟩-degree?
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[37] Matthias Schröder. Admissible Representations for Continuous Computations. PhD thesis,

FernUniversität Hagen, 2002.
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