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Abstract. In this article, we investigate the arithmetical hierarchy from the

perspective of realizability theory. An experimental observation in classical
computability theory is that the notion of degrees of unsolvability for natural
arithmetical decision problems only plays a role in counting the number of
quantifiers, jumps, or mind-changes. In contrast, we reveal that when the

realizability interpretation is combined with many-one reducibility, it becomes
possible to classify natural arithmetical problems in a very nontrivial way.

1. Introduction

The main research theme of computation theory from birth to the present day
is to analyze the computational complexity (degrees of computational difficulty)
of various problems. The most traditional type of problem is called a decision
problem, which refers to a problem that asks to determine if a statement with one
parameter is true or false for each parameter. In computability theory, the basic
tools for measuring the complexity of decision problems are reducibility notions
such as many-one reducibility and Turing reducibility [19].

However, these traditional approaches are too rough to classify “natural” deci-
sion problems, and often only count the number of alternations of quantifiers that
appear in the problem. This experimental observation that the degree structure of
natural decision problems is too simple is also suggested by outstanding problems
in computability theory, such as the problem of finding a natural solution of Post’s
problem and the Martin conjecture [17]. This “natural-degree” problem is often
the subject of debate among computability theorists [22]; however, despite many
years of research, no definitive method has been found for measuring computability-
theoretic complexity of “natural” decision problems (beyond counting the number
of quantifiers, jumps, or mind-changes).

One of the aims of this article is to provide a novel method of measuring the
computability-theoretic complexity of natural problems that goes beyond counting.
Our approach can be summed up in a slogan as follows: “A (decision) problem is
a formula, not a subset of natural numbers or strings.” Of course, in theory, any
problem should be describable as a formula (in the sense of formal logic), so people
who have never studied computation theory will easily accept this slogan, and may
even think it is a self-evident truth that does not need to be stated. The difference
between formulas and subsets is that the former is intensional, while the latter is
extensional, and the impact of this difference is enormous. Introducing the notion
of a decision problem as a formula makes it possible to talk about the notion of
witness for the truth (e.g., an existential witness) of a formula.
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Definition 1.1 (see Definition 2.13 for the rigorous definition). A formula φ is
(realizability-theoretic) many-one reducible to ψ if there exists a computable func-
tion h such that, for any instance x, φ(x) is true iff ψ(h(x)) is true, and moreover,
any witness for the truth of φ(x) is effectively converted into a witness for the truth
of ψ(h(x)) and vice versa.

Formally, the notion of witness is formulated using Kleene’s realizability inter-
pretation [14, 23]. In computational complexity theory, the polytime version of
Definition 1.1 has been introduced by Levin [16] (formulated as a search problem
rather than a decision problem), and known as Levin reducibility. Nevertheless, this
notion has not been studied in computability theory before the author’s article [13].
Definition 1.1 can also be obtained as the realizability interpretation of many-one
reducibility in constructive logic [26, 8].

When the notion of witness is combined with many-one reducibility, each problem
now becomes one that not only requires us to determine whether it is true or false,
but also to provide a witness for the truth if it is true. Then, interestingly, it
becomes possible to classify natural problems in a very nontrivial way. For example,
the author [13] has classified natural Σ2-decision problems as follows:

• Boundedness for countable posets is ∀∞-complete.
• Finiteness of width for countable posets is ∀∞∀-complete.
• Non-density for countable linear orders is ∃∀-complete.

Here, “∀m∃n ≥ m (there are infinitely many n such that ...)” is abbreviated
as “∃∞n”, and “∃m∀n ≥ m (for all but finitely many n ...)” is abbreviated as
“∀∞n”. By combining these quantifiers, one can introduce various classes of for-
mulas (decision problems), which often have natural complete problems as above.
Also, a countable structure can be presented by some computational method (as in
computable structure theory); see Section 3.1.

The above three problems are all classically Σ2-complete (so classically indistin-
guishable), but our reducibility notion can distinguish the computability-theoretic
complexity of these problems. In other words, the difficulty of searching for ex-
istential witnesses differs in these problems. And this difference is caused by the
difference in the “quantifier-patterns (i.e., combinations and order of appearance of
∃, ∀, ∃∞, ∀∞, etc.)” used to describe these problems.

By analyzing further natural decision problems, we reveal the effectiveness of
classification using quantifier-patterns (where, note that the author had not yet
recognized the importance of classifying decision problems using quantifier-patterns
when writing [13]). In order to see this, it is important to analyze a formula and
its dual (see Section 2.3) simultaneously. Then the following stronger reducibility
notion is useful.

Definition 1.2 (see also Definition 2.20). A formula φ is many-one di-reducible to
ψ if both φ and its dual are many-one reducible to ψ and its dual via a common h.

Then one can introduce the notion of dicompleness in a straightforward manner.
Then, in fact, all of the above examples are dicomplete w.r.t. the corresponding
classes.

In this article, we mainly focus on problems that are classically Σ3- or Π3-
complete. For instance, this article reveals that the following “Π3-complete” prob-
lems, which cannot be distinguished in traditional computability theory, actually
have different complexities.
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Figure 1. Complexity of Π3-complete problems

• Lattice: Being lattice for countable posets is ∀∀∞-dicomplete.
• Atomic: Atomicity for countable posets is ∀∀∞-dicomplete.
• LocFin: Local finiteness for countable graphs is ∀∀∞∀-dicomplete.
• FinBranch: Being finitely branching for countable trees is ∀∀∞∀-dicomplete.
• Compl: Complementedness for countable posets is ∀∃∀-dicomplete.
• InfDiamconn: Unboundedness of the diameters of connected components for
countable graphs is ∃∞∃∀-dicomplete.
• Cauchy: Cauchyness for rational sequences is ∀↓∀∞-dicomplete.
• SimpNormal: Simple normality in base 2 for real numbers is ∀↓∀∞-dicomplete.
• Perfectbin: Perfectness for countable binary trees is ∀(∀ → ∃∀)-dicomplete.

The true complexity of these “classically Π3-complete” problems is desplayed
as in Figure 1. Here, for quantifier-patters P,Q, the arrow P → Q means that a
P-complete problem is many-one direducible to a Q-complete problem. No further
arrows can be added.

Let us summarize our key idea behind this classification. When we look at natu-
ral Π3-complete problems, we find that they often contain quantifiers of the form ∀∞
and ∃∞, rather than just ∀∃∀. The order in which these four quantifiers ∀, ∃, ∀∞, ∃∞
occur in a formula is closely related to the complexity of the corresponding problem.
Therefore, it is important to determine how many quantifier-patterns (i.e., finite
strings on {∀, ∃, ∀∞,∃∞}) can exist at each level of the arithmetical hierarchy. In
this article, we also show the following:

• The number of (di-)many-one equivalence classes of Π2 quantifier-patterns
is exactly 1.

∀∃.
• The number of (di-)many-one equivalence classes of Σ2 quantifier-patterns
is exactly 3.

∃∀, ∀∞∀, ∀∞.
• The number of many-one equivalence classes of Σ3 quantifier-patterns is
exactly 3.

∃∀∃, ∀∞∃∞, ∀∞∃.
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• The number of many-one equivalence classes of Π3 quantifier-patterns is
exactly 5.

∀∃∀, ∃∞∀∞∀, ∃∞∀, ∀∀∞∀, ∀∀∞.
• The number of di-many-one equivalence classes of Π3 quantifier-patterns is
exactly 7.

∀∃∀, ∃∞∃∀, ∃∞∀∞∀, ∃∞∀∞,∃∞∀, ∀∀∞∀, ∀∀∞.
Let us comment on one more important point. Although we have presented our

results here in the context of many-one reducibility, the results of this article are all
applicable to Wadge reducibility (a continuous version of many-one reducibility), a
well-studied notion in descriptive set theory [28, 12]. In fact, the study of Wadge
reducibility in intuitionistic descriptive set theory [24, 25, 26, 27] is what triggered
our study.

Our results are applicable to both classical and constructive logics; this article
provides a new perspective and powerful techniques for research on the arithmetical
hierarchy (the Borel hierarchy) in both logics. As for the latter, there has been a
growing interest in constructive logic, and in recent years, there has been a rise in
the number of studies on the arithmetical hierarchy in constructive logic, e.g. [1, 3,
4, 6, 7, 8, 9, 10, 11, 18, 20]. Developments linked to these are also expected.

2. Basic definitions

For the basics of computability theory, see [19]. For an abstract foundation of
this research, see the author’s previous article [13].

2.1. Quantifier. In this article, we consider only arithmetical quantifiers; that is,
bounded variables range over the natural numbers. However, some free variables
may range over (indices of) total functions. We also deal with quantifiers ∃∞
and ∀∞, which express “for infinitely many” and “for all but finitely many (for
cofinitely many),” as well as the existential quantifier ∃ and the universal quantifier
∀. Formally, quantifiers ∃∞ and ∀∞ are defined as follows.

∃∞n. φ(n) ≡ ∀m∃n ≥ m. φ(n),
∀∞n. φ(n) ≡ ∃m∀n ≥ m. φ(n).

From here on, the term “quantifier” refers to one of ∃, ∀, ∃∞, or ∀∞. A finite
sequence ⟨Q0,Q1, . . . ,Qℓ⟩ ∈ {∃, ∀, ∃∞,∀∞}∗ of quantifiers is often abbreviated to
Q0Q1 . . .Qℓ, and called a quantifier-pattern.

Definition 2.1. Let Q0Q1 . . .Qℓ be a quantifier-pattern. A formula of the following
form is called a Q0Q1 . . .Qℓ-formula.

Q0n0Q1n1 . . . ,Qℓnℓ θ(n0, n1, . . . , nℓ, x).

Here, θ is a bounded formula.

Example 2.2. A ∃∀∃-formula is exactly a Σ3-formula.

We introduce a notion for comparing quantifier-patterns. For quantifier-patterns
P̄ and R̄ and a quantifier Q, consider the following rewriting rules:

P̄∃∞R̄→ P̄∀∃R̄; P̄∀∞R̄→ P̄∃∀R̄; P̄∃∃R̄→ P̄∃R̄; P̄∀∀R̄→ P̄∀R̄; P̄R̄→ P̄QR̄.

Definition 2.3. A quantifier-pattern Q̄ is absorbable into Q̄′ if one can obtain Q̄′

from Q̄ by applying the above rewriting rules a finite number of times.
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Figure 2. Example of absorption relations for Σ3 quantier-patterns.

In this case, we write Q̄→∗ Q̄′, or Q̄→ Q̄′ for brevity.

Example 2.4. ∀∀∞∀ is absorbable into ∀∃∀:
∀∀∞∀ → ∀∃∀∀ → ∀∃∀.

Example 2.5. All of the following are absorbable into ∃∀∃:

∀∞∃,∃∃∞, ∀∞∃∞, ∃∀∞∃, ∀∞∀∃, ∃∀∃∞, ∃∃∞∃, ∃∀∞∃∞,∀∞∀∃∞,
∀∞∃∞∃, ∃∀∞∀∃, ∃∀∃∞∃, ∃∀∞∀∃∞, ∀∞∀∃∞∃,∃∀∞∃∞∃, ∃∀∞∀∃∞∃.

In Figure 2, a solid arrows indicate an absorption relation. A dotted arrow is a
di-reducibility relation obtained by Proposition 2.25 below.

Definition 2.6 (Arithmetical hierarchy). The classes Σn and Πn of quantifier-
patterns Q̄ are defined inductively as follows.

(1) ∃,∀, ∃∞, ∀∞ are Σ1,Π1,Π2,Σ2 respectively.
(2) If Q̄ is Σn, then ∃Q̄, ∀Q̄,∃∞Q̄, ∀∞Q̄ are Σn,Πn+1,Πn+1,Σn+2, respectively.
(3) If Q̄ is Πn, then ∃Q̄, ∀Q̄, ∃∞Q̄,∀∞Q̄ are Σn+1,Πn,Πn+2,Σn+1, respectively.

Obviously, this definition is consistent with the classical definition of the arith-
metic hierarchy.

Observation 2.7. For Γ ∈ {Σn,Πn}, if a quantifier-pattern Q̄ is Γ, then a Q̄-
formula is a Γ-formula (in the classical sense).

Observation 2.8. Let Γ be either Σ or Π, and let Γ̌ be the other. If P̄ is Γn and
is absorbable into Q̄, then Q̄ is either Γm for some m ≥ n or Γ̌m for some m > n.

For quantifier-patterns P̄, Q̄, we say that P̄ = (Pi)i<k is a subpattern of Q̄ =
(Qj)j<ℓ if there exists a strictly increasing map h : k → ℓ such that Pi = Qh(i)

holds for any i < k.

Proposition 2.9. A quantifier-pattern Q̄ is Σ3 iff there exists a pattern Q̄′ in
Example 2.5 such that Q̄ is absorbable into Q̄′ and vice versa.

Proof. (⇐) It is clear that the quantifier-petterns presented in Example 2.5 are all
Σ3. By Observation 2.8, Q̄↔ Q̄′ ∈ Σ3 implies Q̄ ∈ Σ3.

(⇒) Let Q̄ be a Σ3-pattern. Let PQ̄′ be the longest tail of Q̄ (i.e., Q̄ is of the
form R̄PQ̄′) which is Σ3. Looking at Definition 2.6, the only quantifiers that yield
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Σ3 are ∃ and ∀∞, so P ∈ {∃, ∀∞}. If P = ∃, then Q̄′ is Π2. If P = ∀∞ then Q̄′

is either Π2 or Σ1. It is easy to see that a Π2-pattern contains ∃∞ or ∀∃ as a
subpattern. A Σ1-pattern clearly contains ∃. To summarize the above, Q̄ contains
one of ∃∃∞,∃∀∃, ∀∞∃∞,∀∞∃ as a subpattern. Furthermore, all of these subpatterns
are Σ3.

If the addition of a quantifier to a Σ3-pattern still maintains Σ3, then it can only
be one of the following: Add ∃ after ∃∞ or before ∀∞; add ∀ before ∃∞ or after
∀∞; insert ∃∞ between ∀ and ∃; or insert ∀∞ between ∃ and ∀. Regardless of which
of ∃∃∞, ∃∀∃,∀∞∃∞, ∀∞∃ is the starting point, the insertion result saturates in the
form of ∃i∀∞∀j∃∞∃k. Since the duplication of ∃ (∀, respectively) can be mutually
absorbed into a single ∃ (∀, respectively), it reaches ∃∀∞∀∃∞∃. Therefore, we only
need to consider subpatterns of ∃∀∞∀∃∞∃, but if we eliminate the duplication of ∃
and ∀, these are all covered by the quantifier-patterns presented in Example 2.5. □

Declaration: In this article, an (arithmetical) formula always refers to a Q̄-formula
φ(x̄) for a quantifier-pattern Q̄. Here, φ is assumed to contain no parameters other
than x̄, and x̄ is a sequence of natural numbers or (indices of) total computable
functions. A computable function parameter is always a free variable; that is, quan-
tification over a computable function parameter never appears in a formula, even
if a computable function is identified with its index (which is a natural number).

The reason we deal with function parameters is because we analyze decision
problems on countable structures, where a computable structure is coded by a to-
tal computable function (see Section 3.1). By the Kreisel-Lacombe-Shoenfield the-
orem [15], there is no difference between total computability over total computable
functions and total computability over their indices, so we simply consider each
function parameter xi as a total computable function (or a computable element in
ωω) rather than its index.

2.2. Realizability. We now consider the notion of witness for a formula, and also
a transformation of a given witness α into another witness β. As for the latter, the
modern approach is to think of a witness α as being given as an oracle, and then
transforming it into another witness β in a computable way — this is the approach
of “topological objects, computable morphisms [2].” Formally, we consider Kleene’s
functional realizability interpretation for arithmetical formulas (see [23]).

In the following, we use the identifications ω×ωω ≃ ωω and (ωω)ω ≃ ωω without
mentioning. So, for α ∈ ωω ≃ (ωω)ω, α(n) is still an element in ωω; that is, α(n)(m)
is identified with α(⟨n,m⟩).

Definition 2.10 (Kleene). For α ∈ ωω and a formula φ, the binary relation α ⊩
φ(x̄) is inductively defined as follows:

α ⊩ θ(x̄) ⇐⇒ α = x̄ and θ(x̄) (for bounded θ)

⟨t, α⟩ ⊩ ∃nφ(n, x̄) ⇐⇒ α ⊩ φ(t, x̄)

α ⊩ ∀nφ(n, x̄) ⇐⇒ α(n) ⊩ φ(n, x̄) for all n ∈ ω
⟨t, α⟩ ⊩ ∀∞nφ(n, x̄) ⇐⇒ α(n) ⊩ φ(n, x̄) for all n ≥ t

α ⊩ ∃∞nφ(n, x̄) ⇐⇒ π1 ◦ α(n) ⊩ φ(π0 ◦ α(n), x̄)
and π0 ◦ α(n) ≥ n for all n.

If α ⊩ φ(x̄), then we say that α is a witness for φ(x̄).
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We only consider Σ3- and Π3-formulas in this article, so the definition of func-
tional realizability can be simplified. This is because a witness for the inner Π2-
subformula can be restored in a computable way without explicitly giving it, so it
can be omitted. For instance, a witness for a Σ3 formula can be replaced with a
sequence of existential witnesses for the outermost block of existential quantifiers.

Example 2.11. A (simplified) witness for a ∃∀∞∃∞-formula ∃a∀∞b∃∞cφ(a, b, c, x)
is a pair ⟨a, b′⟩ such that the Π2-subformula ∀b ≥ b′∃∞cφ(a, b, c, x) is true.

Example 2.12. A (simplified) witness for a ∀∃∞∀-formula ∀a∃∞b∀cφ(a, b, c, x)
is a function h such that, for any a and b, h(a, b) ≥ b and the Π1-subformula
∀cφ(a, h(a, b), c, x) is true.

As mentioned in Section 1, our key idea for distinguishing various natural deci-
sion problems is not to identify a decision problem with a subset. In other words,
we consider a formula itself to be a decision problem. Based on this perspective,
various computability-theoretic notions can be redefined as operations on formulas.

Definition 2.13 (see [13]). A Q̄-formula φ(x̄) ismany-one reducible to a Q̄′-formula
ψ(x̄) if there exist computable functions η, r−, r+ such that the following holds:

(1) φ(x̄) is true iff ψ(η(x̄)) is true.
(2) α ⊩ φ(x̄) implies r−(α, x̄) ⊩ ψ(η(x̄)).
(3) α ⊩ ψ(η(x̄)) implies r+(α, x) ⊩ φ(x̄).

In this case, we write φ(x̄) ≤m ψ(x̄). Often, the free variable part x̄ is omitted,
and φ(x̄) ≤m ψ(x̄) is simply written as φ ≤m ψ.

In other words, φ ≤m ψ iff there exists a computable function η such that
φ(x̄) ↔ ψ(η(x̄)) is realizable. Here, r− is a realizer for the forward implication
φ(x̄)→ ψ(η(x̄)), and r+ is a realizer for the backward implication φ(x̄)← ψ(η(x̄)).
Its polytime version has been introduced by Levin [16]; see also [13].

Definition 2.14. An arithmetical formula φ is strictly Q̄-complete if φ is a Q̄-
formula and ψ ≤m φ for any Q̄-formula ψ. A formula φ is Q̄-complete if it is
m-equivalent to a strictly Q̄-complete formula.

Proposition 2.15. A Q̄-complete formula exists for any quantifier-pattern Q̄.

Proof. Given a quantifier P and an arithmetic formula φ, the formula Pφ is defined
as follows. For each x̄ = (xn)n∈ω,

(Pφ)(x̄, ȳ) ≡ Pn. φ(xn, ȳ)

The free variable part ȳ is omitted below. We show that φ ≤m ψ implies Pφ ≤m

Pψ. Assume φ ≤m ψ via η, r−, r+. Then define η′(x̄) = (η(xn))n∈ω for x̄ = (xn)n∈ω.
(P = ∃): A witness for (∃φ)(x̄) is of the form (t, a). Then α witnesses φ(xt),

so r−(α, xt) witnesses ψ(η(xt)). Hence, (t, r−(α, xt)) witnesses (∃ψ)(η′(x)). There-
fore, r′− : (t, α) 7→ (t, r−(α, xt)) gives a realizer for the forward direction. A similar
argument applies to the conversion from a witness for (∃ψ)(η′(x)) to a witness for
(∃φ)(x).

(P = ∀): If α witnesses (∀φ)(x̄) then α(n) witnesses φ(xn), so r−(α(n), xn)
witnesses ψ(η(xn)). Hence, λn.r−(α(n), xn) witnesses (∀ψ)(η′(x̄)). Therefore,
r′− : α 7→ λn.r−(α(n), xn) gives a realizer for the forward direction. A similar
argument applies to the conversion from a witness for (∀ψ)(η′(x̄)) to a witness for
(∀φ)(x̄).
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(P = ∀∞): A witness for (∀∞φ)(x̄) is of the form (t, α). For any n ≥ t, α(n)
witnesses φ(xn), so r−(α(n), xn) witnesses ψ(η(xn)). Hence, (t, λn.r−(α(n), xn))
witnesses (∀∞ψ)(η′(x̄)). A similar argument applies to the conversion from a wit-
ness for (∀∞ψ)(η′(x̄)) to a witness for (∀∞φ)(x̄).

(P = ∃∞): If α witnesses (∃∞φ)(x̄) then for αi(n) = πi(α(n)) we have α0(n) ≥ n
and α1(n) witnesses φ(xα0(n)). Therefore, r−(α1(n), xα0(n)) witnesses ψ(η(xα0(n))).
Hence, λn.⟨α0(n), r−(α1(n), xα0(n))⟩ witnesses (∃∞ψ)(η′(x̄)). A similar argument
applies to the conversion from a witness for (∃∞ψ)(η′(x̄)) to a witness for (∃∞φ)(x̄).

Now, inductively assume that a Q̄-complete formula ⟨Q̄⟩ is given. If we define
⟨PQ̄⟩ = P⟨Q̄⟩, then by the above discussion, ⟨PQ̄⟩ is PQ̄-complete. By induction,
this shows that there exists a Q̄-complete formula for any quantifier-pattern Q̄. □

Example 2.16. The following is an example of a ∃∞∀∞∀-formula:

∃∞n∀∞m∀k. x(n,m, k) = 0

We fix a Q̄-complete problem ⟨Q̄⟩.

Observation 2.17. If a quantifier-pattern Q̄ is absorbable into Q̄′, then ⟨Q̄⟩ ≤m

⟨Q̄′⟩.

Now, let us think about Σ2 formulas. Analyzing natural examples of Σ2 prob-
lems, we find that typical examples are described by one of ∀∞, ∀∞∀, ∃∀. If we
consider Σ2 problems to be Σ2 sets, we will not be able to distinguish between
them at all, but by directly analyzing the complexity of decision problems as for-
mulas rather than subsets, we can understand the differences between them. In
fact, the author [13] has shown that the Σ2-patterns ∀∞, ∀∞∀ and ∃∀ each yield
different levels of complexity:

Fact 1 ([13]). ⟨∀∞⟩ <m ⟨∀∞∀⟩ <m ⟨∃∀⟩.

2.3. Dual quantifier. The dual Qd of a quantifier Q is defined as follows:

∃d = ∀, ∀d = ∃, (∃∞)d = ∀∞, (∀∞)d = ∃∞

The dual of a quantifer-pattern Q̄ = Q0Q1 . . .Qℓ is defined as Q̄d = Qd
0Q

d
1 . . .Q

d
ℓ .

The dual φd of a Q̄-formula φ = Q̄n̄θ(n̄, x) is defined as Q̄dn̄¬θ(n̄, x); that is,(
Q0n0Q1n1 . . .Qℓnℓ θ(n0, n1, . . . , nℓ, x)

)d
= Qd

0n0Q
d
1n1 . . .Q

d
ℓnℓ ¬θ(n0, n1, . . . , nℓ, x),

where θ is a bounded formula. Of course, classically, the dual φd of an arithmetical
formula φ is merely the negation ¬φ.

Observation 2.18. The dual φd of a Q̄-formula φ is a Q̄d-formula.

Definition 2.19. For pairs (φ,φ′) and (ψ,ψ′) of formulas, we say that (φ,φ′) is
many-one reducible to (ψ,ψ′) if φ ≤m ψ and φ′ ≤m ψ′ via a common η. Here,
realizers r− and r+ can be different. In this case, we write (φ,φ′) ≤m (ψ,ψ′).

Definition 2.20. A formula φ is many-one di-reducible to ψ if (φ,φd) ≤m (ψ,ψd).
In this case, we write φ ≤dm ψ. A formula φ is strictly Q̄-dicomplete if φ is a
Q̄-formula and ψ ≤dm φ for any Q̄-formula ψ. A formula φ is Q̄-dicomplete if it is
dm-equivalent to strict Q̄-dicomplete formula.

Proposition 2.21. A Q̄-dicomplete formula exists for any quantifier-pattern Q̄.
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Proof. In fact, the proof of Proposition 2.15 shows that φ ≤m ψ implies Pφ ≤m Pψ,
but since the reduction η is the same regardless of P, so in fact the previous proof
shows that φ ≤bm ψ implies Pφ ≤bm Pψ. Therefore, the Q̄-complete formula ⟨Q̄⟩
constructed in Proposition 2.15 is actually Q̄-dicomplete. □

Observation 2.22. If a quantifier-pattern Q̄ is absorbable into Q̄′ then ⟨Q̄⟩ ≤bm

⟨Q̄′⟩.

Let us extract the following useful lemma from the proof of Proposition 2.21.

Lemma 2.23. For quantifier-patterns P̄, Q̄, Q̄′, ⟨Q̄⟩ ≤m ⟨Q̄′⟩ implies ⟨P̄Q̄⟩ ≤m

⟨P̄Q̄′⟩. Similarly, ⟨Q̄⟩ ≤dm ⟨Q̄′⟩ implies ⟨P̄Q̄⟩ ≤dm ⟨P̄Q̄′⟩.

Proof. As mentioned in the proof of proposition 2.21, φ ≤m ψ implies Pφ ≤m Pψ,
and φ ≤dm ψ implies Pφ ≤dm Pψ. □

Using this lemma, we can obtain some reductions that cannot be obtained im-
mediately from the absorption relation.

Proposition 2.24. ⟨∀∃⟩ ≤m ⟨∃∞⟩ holds; hence ⟨Q̄∀∃⟩ ≤m ⟨Q̄∃∞⟩ for any quantifier-
pattern Q̄.

Proof. For the first assertion, given x̄ = (xn)n∈ω, we construct y = η(x̄) satisfying
the following:

∀m∃k. xm(k) ̸= 0 ⇐⇒ ∃∞t. y(t) ̸= 0.

We inductively constructm[s]. First putm[0] = 0. Assume thatm[s] has already
been constructed at stage s. If xm[s](k) ̸= 0 for some k ≤ s, then put y(s) = 1 and
m[s+ 1] = m[s] + 1. Otherwise, put y(s) = 0 and m[s+ 1] = m[s]. One can easily
see that this gives the desired reduction. Then the second assertion follows from
Lemma 2.23. □

As mentioned in Fact 1, the dual of the above result does not hold. For dire-
ducibility, we need to weaken the statement as follows:

Proposition 2.25. ⟨∃⟩ ≤dm ⟨∃∞⟩ holds; hence ⟨Q̄∃⟩ ≤dm ⟨Q̄∃∞⟩.

Proof. For the first assertion, given x, we construct y = η(x) satisfying the follow-
ing:

∃t. x(t) ̸= 0 ⇐⇒ ∀s∃t ≥ s. y(t) ̸= 0

To be explicit, put y(t, u) = x(t). Then obviously, the above equivalence holds,
and the corresponding realizers can be easily obtained. For the dual reduction,
since the dual of the left side does not involve a witness (since it is a ∀-formula),
it is sufficient to show that whenever x satisfies the dual of the left side, we can
obtain a witness for the dual of the right side. Suppose that x(t) = 0 for any t. In
this case, y(t, u) = 0 for any (t, u), so s = 0 is a witness for the right-hand side.
Then the second assertion follows from Lemma 2.23. □

To make it easier to understand the discussion from here on, let us illustrate
the relationship between Σ3- and Π3-patterns in advance as Figure 3. Here, the
arrow P̄→ Q̄ implies ⟨P̄⟩ ≤m ⟨Q̄⟩, regardless of whether it is a dotted line or a solid
line. Later we will see that all classes of quantifier-patterns that belong to a region
enclosed by a polygon or ellipse are ≡m-equivalent.
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Figure 3. The many-one classification of Σ3- and Π3-patterns

3. Natural complete problems

Here, we perform a detailed analysis of classical Σ3- and Π3-complete problems.

3.1. Countable structure. In this article, we often deal with countable structures
such as countable partial orders and countable graphs. Since they are all countable
binary relations, we present how to handle countable binary relations. A countable
binary relation we deal with in this article is a pair (X,R) where X ⊆ ω and
R ⊆ X2. A code for a binary relation (X,R) is (p, q) ∈ ωω × ωω×ω ≃ ωω such that
X = {n ∈ ω : p(n) = 1} and R = {(a, b) ∈ ω2 : q(a, b) = 1}. From now on, a binary
relation is always identified with its code.

The set of all finite sequences from X is written as X<ω. A tree refers to a
acyclic directed graph with a root, but in this article, a tree is treated as a subset
of ω<ω that is closed under taking initial segment.

3.2. ∀∀∞∀: Local finiteness. Let us take a closer look at various Π3-complete
problems. Interestingly, the form that appears most often does not seem to be
∀∃∀. First, let us take a look at ∀∀∞∀-formulas (where note that the quantifier-
pattern ∀∀∞∀ is Π3). The following ∀∀∞∀-dicomplete formula is useful for gaining
an intuition of ∀∀∞∀.

Observation 3.1. The following formula is ∀∀∞∀-dicomplete:

∀n∃k∀t. x(n, t) ≤ k.

Proof. The boundedness for a sequence, Bdd ≡ ∃k∀t. x(t) ≤ k, is ∀∞∀-complete
[13]. For the dual, a witness for a ∀∃-formula is always computable, so the dicom-
pleteness follows automatically. That is, Bdd ≡bm ⟨∀∞∀⟩. By the same discussion
as in Lemma 2.23, we get ∀Bdd ≡bm ⟨∀∀∞∀⟩. The formula in the assertion is
nothing other than ∀Bdd, so the proof is complete. □

The ∀∀∞∀-dicomplete formula described above, in a nutshell, expresses the prop-
erty “being bounded everywhere.” Thus, typical examples of ∀∀∞∀-formulas are
those related to local finiteness.

A partial order is locally finite if every interval contains finitely many elements.
A graph is locally finite if every vertex has finite degree. A locally finite tree is often
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called a finitely branching tree. To be precise, we consider the following properties
for a partial order P , a graph (V,E) and a tree T :

LocFinPO : ∀a, b ∈ P ∃k |{c ∈ P : a <P c <P b}| ≤ k.
LocFinG : ∀a ∈ V ∃k |{b ∈ V : (a, b) ∈ E}| ≤ k.

FinBranch : ∀σ ∈ T ∃k |{n ∈ ω : σ⌢n ∈ T}| ≤ k.

Here, for a set A, |A| ≤ k denotes that the cardinality of A is at most k. That
is, |A| ≤ k is an abbreviation of the following formula:

∀c0, c1, . . . , ck ∈ A ∃i, j ≤ k (i ̸= j ∧ ci = cj).

The above three formulas are all just Π3 formulas in the classical sense. Note
that the ∃k in these definitions can be replaced with ∀∞k, so they can be considered
∀∀∞∀-formulas.

Proposition 3.2. LocFinPO is ∀∀∞∀-dicomplete.

Proof. As in the above argument, one can easily see LocBddPO ≤dm ⟨∀∀∞∀⟩. For
∀∀∞∀-dicompleteness, by Observation 3.1, it remains to show ∀Bdd ≤dm LocFinPO.
In order to show this, given x = (xn)n∈ω, we construct a partial order P = η(x)
such that

∀n∃k∀t. xn(t) ≤ k ⇐⇒ P is locally finite.

The construction proceeds as follows. First, put the bottom element ⊥ and
infinitely many pairwise incomparable elements {an}n∈ω in P . Moreover, for any
n, if xn(t) ≥ k for some t, then insert cnk,t between ⊥ and an for the least such

t. Here, if ⟨k, t⟩ ̸= ⟨ℓ, s⟩ then cnk,t is incomparable with cnℓ,s. Formally, ⊥, an, cnk,t
can be coded as ⟨0, 0, 0, 0⟩, ⟨1, n, 0, 0⟩, ⟨2, n, k, t⟩, respectively, for example. This
construction gives a reduction η for ∀∀∞∀-dicompleteness.

Let us analyze this construction. The only comparable elements in P are ⊥ <P

cnk,t <P an, and all others are incomparable. Moreover, there is nothing in the

intervals [⊥, cnk,t] and [cnk,t, an] except for the endpoints, so the only intervals that

can contain multiple elements are [⊥, an]. Thus, given (p, q) is of the form (⊥, an),
only elements of the form cnk,t are enumerated in the interval [⊥, an], but at most
one such element is enumerated for each k. Therefore, that k is an upper bound for
xn is equivalent to that the cardinality of the interval (⊥, an) is less than or equal
to k.

In order to show ∀∀∞∀-completeness, let n 7→ kn be a witness for ∀Bdd(x). We
need to find a witness for local finiteness of P = η(x). Given p, q ∈ P , if (p, q) is
not of the form (⊥, an), then there is nothing in this interval as discussed above,
so up,q = 0 is an upper bound for the cardinality of this interval. If (p, q) is of
the form (⊥, an), the given upper bound kn for xn is also an upper bound for the
cardinality of the interval (⊥, an) as discussed above. In this case, put up,q = kn,
and then (p, q) 7→ up,q is a witness for LocFinPO(P ).

Conversely, let (p, q) 7→ up,q be a witness for LocFinPO(P ). In particular, for any
n, u⊥,an is an upper bound for the cardinality of the interval (⊥, an), which is also
an upper bound for xn by the above argument. Hence, n 7→ u⊥,an is a witness for
∀Bdd(x).

Next we show the ∃∃∞∃-completeness of the dual (LocFinPO)
d. Let n be a witness

for (∀Bdd)d(x). This means that xn has no upper bound, so the interval [⊥, an] has
infinitely many elements; hence (⊥, an) is an witness for (LocFinPO)

d(P ).
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Conversely, let (a, b) be a witness for (LocFinPO)
d(P ). Then this must be of the

form (⊥, an) and such n is a witness for (∀Bdd)d(x) by the above argument. □

Proposition 3.3. LocFinG is ∀∀∞∀-dicomplete.

Proof. As before, LocFinG ≤m ⟨∀∀∞∀⟩. In order to show ∀Bdd ≤dm LocFinG, given
x = (xn)n∈ω, we construct a graph G = η(x) such that

∀n∃k∀t. xn(t) ≤ k ⇐⇒ G is locally finite.

The construction proceeds as follows. First put a special vertex u in G = (V,E).
Moreover, for any n, if xn(t) ≥ k for some t, then put a vertex vnk,t which is adjacent

only to u for the least such t. That is, (u, vnk,t) ∈ E for such vnk,t. Formally, u, vnk,t
can be coded as ⟨0, 0, 0, 0⟩, ⟨1, n, k, t⟩, respectively, for example. This construction
gives a reduction η for ∀∀∞∀-dicompleteness. The proof of the dicompleteness is
the same as before. □

In exactly the same way, one can also show the following.

Proposition 3.4. FinBranch is ∀∀∞∀-dicomplete.

3.3. ∀∀∞: Local finiteness for codes. Local finiteness discussed in Section 3.2
can also be expressed in a different way. Consider the following properties for a
partial order P , a graph (V,E), and a tree T :

LocCFinPO : ∀a, b ∈ P ∀∞c ∈ P (a <P b→ ¬(a <P c <P b)).

LocCFinG : ∀a ∈ V ∀∞b ∈ V. (a, b) ̸∈ E.
CFinBranch : ∀σ ∈ T ∀∞n. σ⌢n ̸∈ T.

The difference from Section 3.2 is that a witness is not an upper bound for the
cardinality, but an upper bound for the code. The existence of an upper bound
for the cardinality of a set A is classically equivalent to the existence of an upper
bound for the codes {ȧ ∈ ω : a ∈ A} of the elements of A (where ȧ is a code of a),
but the difficulty of finding them can be different. Of course, the coded versions
are a little unnatural, but let us analyze these notions as well.

Proposition 3.5. LocCFinPO is ∀∀∞-dicomplete.

Proof. Clearly, LocCFinPO is a ∀∀∞-formula. Hence, it suffices to show ⟨∀∀∞⟩ ≤dm

LocCFinPO. Given x = (xn)n∈ω, we construct a partial order P = η(x):

∀n∃s∀t ≥ s. xn(t) = 0 ⇐⇒ P is locally finite.

The construction is almost the same as in Proposition 3.2. First, put the
bottom element ⊥ and infinitely many pairwise incomparable elements {an}n∈ω

in P . Moreover, for any n, if xn(k) ̸= 0, then insert cnk between ⊥ and an.
Now, the codes are important. Formally, we assume that ⊥, an, cnk are coded as
⟨0, 0, 0⟩, ⟨1, n, 0⟩, ⟨2, n, k⟩, respectively. This construction gives a reduction η for
∀∀∞∀-dicompleteness.

In order to show ∀∀∞-completeness, let n 7→ sn be a witness for x ∈ ⟨∀∀∞⟩; that
is, xn(t) = 0 for any t ≥ sn. Then take the largest t < sn such that xn(t) ̸= 0. Given
p, q ∈ P , if (p, q) is not of the form (⊥, an), then there is nothing in this interval,
so take any number cp,q = 0. If (p, q) is of the form (⊥, an), the construction
enumerate nothing into the interval after cnt , so let cp,q be the code of cnt ; that is,
cp,q = ⟨2, n, t⟩. Then (p, q) 7→ cp,q is a witness for LocCFinPO(P ).
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Conversely, let (p, q) 7→ cp,q be a witness for LocCFinPO(P ). This means that if
a ≥ cp,q then a is not contained in the interval (p, q). For each n, a sufficiently large
sn satisfies c⊥,an ≤ ⟨2, n, sn⟩. This is a code of cnsn , so ⊥ <P cnsn <P an fails. By
definition, this implies that xn(t) ̸= 0 for any t ≥ sn. Hence, n 7→ sn is a witness
for ⟨∀∀∞⟩(x).

Next we show the ∃∃∞-completeness of the dual (LocCFinPO)
d. Let n be a

witness for ⟨∃∃∞⟩(x), which means that xn(t) ̸= 0 for infinitely many t. Then
the interval [⊥, an] contains infinitely many elements, so (⊥, an) is a witness for
(LocCFinPO)

d(P ).
Conversely, let (p, q) be a witness for (LocCFinPO)

d(P ). Then this must be of
the form (⊥, an) and such n is a witness for x ∈ ⟨∃∃∞⟩ as in Proposition 3.2. □

Proposition 3.6. LocFinite(G) is ∀∀∞-dicomplete.

Proof. As before, LocCFinG ≤m ⟨∀∀∞∀⟩. In order to show ⟨∀∀∞⟩ ≤dm LocCFinG,
given x = (xn)n∈ω, we construct a graph G = η(x) such that

∀n∃s∀t ≥ s. xn(t) = 0 ⇐⇒ G is locally finite.

The construction proceeds as follows. First put a special vertex u in G = (V,E).
Moreover, for any n, if xn(k) ̸= 0, then put a vertex vnk which is adjacent only to
u. That is, (u, vnk ) ∈ E for such vnk . Formally, we assume that u, vnk are coded
as ⟨0, 0, 0⟩, ⟨1, n, k⟩, respectively. This construction gives a reduction η for ∀∀∞-
dicompleteness. The proof of the dicompleteness is the same as before. □

In exactly the same way, one can also show the following.

Proposition 3.7. FinBranch is ∀∀∞-dicomplete.

3.4. ∀∃!∀: Universality. As an example of a ∀∀∞-complete formula, in Section
3.3, we have given an alternative presentation of local finiteness, but it is somewhat
unnatural, as it relies on how to code a structure (i.e., it uses the order on the codes).
Therefore, here we give another natural example of a ∀∀∞-complete formula. What
we present here is a formula related to some kind of universality. However, this does
not appear in the form of a ∀∀∞-formula, but rather in the form of a ∀∃!∀-formula,
where ∃! expresses the unique existence. Let us look at a concrete example.

A partial order P is a lattice if any two elements a, b ∈ P have the infimum a∧ b
and the supremum a ∨ b. Formally, this is the following formula:

Lattice : ∀a, b ∈ P∃c, d ∈ P∀e ∈ P [c ≤P a, b ≤P d ∧
(e ≤P a, b→ e ≤P c) ∧ (a, b ≤P e→ d ≤P e)].

The elements c and d in the above formula represent the infimum a ∧ b and the
supremum a ∨ b, respectively. The key point of this formula is that the infimum
and supremum are unique if they exist. Thus, the existential quantifier ∃ in the
above formula can be replaced with the unique existential quantifier ∃!. In other
words, the formula expressing a lattice is not only of the ∀∃∀-type, but also of the
∀∃!∀-type.

Definition 3.8. A ∀∃∀-formula ∀a∃b∀c θ(a, b, c, x) fulfills the ∀∃!∀-condition if the
following holds:

∀a∃b∀c θ(a, b, c, x)↔ ∀a∃!b∀c θ(a, b, c, x)

Lemma 3.9. If a ∀∃∀-formula φ fulfills the ∀∃!∀-condition, then φ ≤bm ⟨∀∀∞⟩.
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Proof. Assume that φ(x) ≡ ∀n∃k∀ℓ θ(n, k, ℓ, x) fulfills the ∀∃!∀-condition. To show
φ ≤bm ⟨∀∀∞⟩, given x, we construct y = η(x) such that

∀n∃k∀ℓ. θ(n, k, ℓ, x) ⇐⇒ ∀n∀∞t. yn(t) = 0.

The construction proceeds as follows. First, yn has a unique guess ks for k
for each stage s. We first set k0 = 0. We inductively assume that ks has been
constructed. If the guess is found to be wrong at stage s, that is, if there exists
ℓ ≤ s such that θ(n, ks, ℓ, x) is false, then put yn(s) = 1 and ks+1 = ks + 1. If the
guess is still correct, then put yn(s) = 0 and ks+1 = ks.

Let n 7→ k(n) be a witness for φ(x). By the ∀∃!∀-condition, k(n) is the only one
that makes θ(n, k, ℓ, x) true for any ℓ. Since other guesses are incorrect, we will
eventually reach ksn = k(n). For the least such sn, the guess ksn cannot be refuted
after this stage, so we have yn(t) = 0 for any t ≥ s. Therefore, n 7→ sn is a witness
for ⟨∀∀∞⟩(y).

Conversely, let n 7→ sn be a witness for ⟨∀∀∞⟩(y); that is, yn(t) = 0 for any
t ≥ sn. This means that the guess ksn is not refuted after stage sn, so θ(n, ks, ℓ, x)
holds for any ℓ. Therefore, n 7→ ksn is a witness for φ(x).

The same argument applies to the dual. □

Theorem 3.10. Lattice is ∀∀∞-dicomplete.

Proof. As seen above, Lattice fulfills the ∀∃!∀-condition. Thus, by Lemma 3.9,
we get Lattice ≤dm ⟨∀∀∞⟩. It remains to show the converse direction ⟨∀∀∞⟩ ≤dm

Lattice. Given x = (xn)n∈ω we construct a partial order P = η(x) such that

∀n∃s∀t ≥ s. xn(t) = 0 ⇐⇒ P is a lattice.

The construction proceeds as follows. First put the bottom element ⊥, the top
element ⊤ and infinitely many pairwise incomparable elements {an, bn}n∈ω in P .
Moreover, for each n, insert an increasing sequence Cn = {cnk : xn(k) ̸= 0} between
⊥ and {an, bn}; that is, if cnk , cnℓ are defined for k < ℓ, then

⊥ <P cnk <P cnℓ <P an, bn.

This construction gives a reduction η for ∀∀∞-dicompleteness. Let us analyze
this construction. We call {an, bn}∪Cn the nth block. For a pair {u, v} of elements
in P , if u and v belong to different blocks, then u∧v = ⊥ and u∨v = ⊤, respectively.
Assume that u and v both belong to the nth block. If {u, v} ̸= {an, bn}, then u
and v are comparable, and one can check which one, u ≤P v or v ≤P u, holds true.
If the former holds, u ∧ v = u and u ∨ v = v, and if the latter holds, u ∧ v = v and
u∨v = u. If {u, v} = {an, bn}, then an∨ bn = ⊤, so only an∧ bn depends on x. For
the infimum an ∧ bn, only the increasing sequence Cn is inserted between ⊥ and
{an, bn}, so an ∧ bn is the maximum element of Cn. If Cn is an infinite set, then
there is no maximum element, so an ∧ bn also do not exist. Therefore, that P is a
lattice is equivalent to that {an, bn} has a infimum for any n, which is equivalent
to that Cn is finite for any n.

First, we show the ∀∀∞-completeness of Lattice. Let n 7→ sn be a witness for
⟨∀∀∞⟩(x); that is, xn(t) = 0 for any t ≥ sn. By checking the values of xn(t) for
t ≤ sn, we can compute the smallest witness s′n ≤ sn. In this case, the largest
element in Cn is cns′n−1. Therefore, the infimum of {an, bn} is cns′n−1. Conversely, if

a witness for P being a lattice is given, in particular, we have (an, bn) 7→ an∧bn. As
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discussed above, such an an ∧ bn is in the form of cnk(n), and c
n
k(n) is the maximum

element of Cn, so n 7→ k(n) gives a witness for ⟨∀∀∞⟩(x).
Next, we show that the ∃∃∞-completeness of the dual Latticed. Let n be a witness

for x ∈ ⟨∃∃∞⟩; that is, there are infinitely many t such that xn(t) ̸= 0. In this case,
Cn is an infinite set, so there is no infimum of {pn, qn}. Therefore, {pn, qn} is a

witness for Latticed(P ). Conversely, if a witness for Latticed(P ) is given, it is always

in the form of {pn, qn}. Recall that {pn, qn} is a witness for Latticed(P ) iff Cn is
an infinite set, which means that there are infinitely many t such that xn(t) ̸= 0.
Therefore, n is witness for ⟨∃∃∞⟩(x). □

3.5. ∀∀∞: Verifiability. Next, let us look at an example that does not look like
a ∀∀∞-type at first glance, but actually is.

A partial order P is atomic if every non-bottom element a ∈ P bounds a minimal
element. Formally, this is the following formula:

Atomic : ∀a∃b∀c [a >P ⊥ → (⊥ <P b ≤P a ∧ ¬(⊥ <P c <P b)].

Of course, the part ∃b∀c in the above formula cannot be replaced with either
∃b∀c ≥ b or ∃!b∀c, so at first glance, this is neither the ∀∀∞-type nor the ∀∃!∀-type.
Now the key observation is that this problem has the property of verifiability: If we
have at least one witness a 7→ ba for Atomic(x), then for any pair (a′, b′), one can
verify whether or not b′ is a witness at a′ (that is, b′ is a minimal element below
a′).

Definition 3.11. A ∀∃∀-formula φ ≡ ∀a∃b∀c θ(a, b, c, x) is verifiable if there exists
a partial computable function verify such that for any witness w for x ∈ φ the
following holds for any a and b:

verify(w, a, b, x) =

{
1 if ∀c θ(a, b, c, x),
0 otherwise.

Example 3.12. Atomic is verifiable. To see this, let w be a witness for Atomic(x).
If b is minimal, w(b) = b. If b is not minimal, then either b = ⊥ or w(b) < b.
Therefore, b is a witness at a (that is, b is a minimal element below a) iff either
a = ⊥ or w(a) = a = b or ⊥ <P w(b) = b <P a. This decision is clearly computable.

Lemma 3.13. If a ∀∃∀-formula φ is verifiable, then φ ≤dm ⟨∀∀∞⟩.

Proof. Let φ be of the form ∀n∃m∀k.x(n,m, k) = 0. Slightly modifying the reduc-
tion η in the proof of Proposition 2.24, given x, one can construct y = η(x) such
that

∀n∃m∀k. x(n,m, k) = 0 ⇐⇒ ∀n∀∞t. yn(t) = 0.

Recall that this reduction is defined by the process that, given n, searches for
the least m such that x(n,m, k) = 0 for any k. Hence, if (sn)n∈ω is a witness for
⟨∀∀∞⟩(y), then the m seen at the snth stage of the search actually provides the
least witness at n. Conversely, if m̄ = (mn)n∈ω is a witness for x ∈ φ, then for
each n′, search for the least m′ such that verify(m̄, n′,m′, x) = 1. Then simulate
the construction of y = η(x) until the stage sn′ at which the search process arrives
at m′. Then n′ 7→ sn′ is a witness for ⟨∀∀∞⟩(y).

For the dual, we only need to consider the n part, but since the reduction is a
parallel process for each n, it is easy to verify that n is a witness for φd(x) iff it is
a witness for ⟨∃∃∞⟩(η(x)). □
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Theorem 3.14. Atomic is ∀∀∞-dicomplete.

Proof. By Example 3.12 and Lemma 3.13, we have Atomic ≤dm ⟨∀∀∞⟩. In order to
show ⟨∀∀∞⟩ ≤dm Atomic, given x = (xn)n∈ω, we construct a partial order P = η(x)
such that

∀n∃s∀t ≥ s. xn(t) = 0 ⇐⇒ P is atomic.

First put the bottom element ⊥ in P . For each n, s, define Pn,s = {t ≥ s :
xn(t) ̸= 0}. Then add the following elements to P .

{pn,s1,t1,...,sℓ,tℓ,s : n, s ∈ ω and ti ∈ Pn,si for each i ≤ ℓ}.

Here, if σ and τ are incomparable, then pσ and pτ are also incomparable, and if
τ properly extends σ, we put ⊥ <P pτ <P pσ.

Now, let n 7→ sn be a witness for ⟨∀∀∞⟩(x); that is, xn(t) = 0 for any t ≥ sn.
To find a witness for P being atomic, let p = pn,σ,s ∈ P be given. If s ≥ sn then
Pn,s = ∅, so a(p) := pn,σ,s is a minimal element. If s < sn then check if xn(t) = 0
for any s ≤ t < sn. If so, we know Pn,s = ∅; hence a(p) := pn,σ,s is a minimal
element. Otherwise, take t such that s ≤ t < sn and xn(t) ̸= 0. The latter means
t ∈ Pn,s, so we get ⊥ <P pn,σ,s,t,sn <P pn,σ,s, and pn,σ,s,t,sn is a minimal element as
in the above argument. Then put a(p) := pn,σ,s,t,sn . In any case, ⊥ <P a(p) ≤P p
and a(p) is a minimal element. Hence, p 7→ a(p) witnesses that P is atomic.

Conversely, let p 7→ a(p) witness that P is atomic. Then, given n, compute
a(pn,0). If a(pn,0) = pn,0 then pn,0 is minimal, which means Pn,0 = ∅, so xn(t) = 0
for any t. Then put sn = 0. Otherwise, a(pn,0) is of the form pn,σ,s, which must be
minimal, so this means Pn,s = ∅; that is, xn(t) = 0 for any t ≥ s. Then put sn = s.
In any case, n 7→ sn is a witness for ⟨∀∀∞⟩(x).

For the dual, let n be a witness for ⟨∃∃∞⟩(x); that is, xn(t) ̸= 0 for infinitely
many t. In particular, Pn,s ̸= ∅ for any s. In particular, there is no minimal element

below pn,0. Hence pn,0 is a witness for Atomicd(P ).

Conversely, let pn,σ,s be a witness for Atomicd(P ). Then there is no minimal
element below pn,σ,s. In particular, some t ∈ Pn,s exists. Then pn,σ,s,t,s′ <P pn,σ,s
for any s′. By the assumption, this is not minimal, too, so Pn,s′ ̸= ∅. Therefore,
for any s′ there exists t ≥ s′ such that xn(t) ̸= 0. This means that n is a witness
for ⟨∃∃∞⟩(x). □

3.6. ∀∃∀-dicomplete. All of the Π3-problems discussed so far in Section 3 are
actually Π3-complete in the classical sense, whereas they are not ∀∃∀-complete
under ≤m. Therefore, it would be interesting to see whether there are natural
∀∃∀-(di)complete problems.

As an example of a ∀∃∀-dicomplete problem, we here propose the complement-
edness problem for partial orders. We assume that a poset P is bounded; that is,
it has the top element ⊤ and the bottom element ⊥. A complement of an element
a ∈ P is an element b ̸= a such that a ∨ b = ⊤ and a ∧ b = ⊥. To be precise, there
is no c such that either a, b ≤P c <P ⊤ or ⊥ <P c ≤P a, b holds. Such an element b
is not necessarily unique. A bounded poset P is complemented if every a ∈ P has
a complement. Formally,

Compl : ∀a ∈ P ∃b ∈ P ∀c ∈ P ¬[(a, b ≤P c <P ⊤) ∨ (⊥ <P c ≤P a, b)].

Theorem 3.15. Compl is ∀∃∀-dicomplete.
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Proof. Before starting the proof, let us explain the basic idea of our construction.
We first put the order q <S p0, p1 on the set S = {p0, p1, q} of three symbols. Let
Q be the set of all finite subsets of ω ordered by inclusion. Then, let us analyze the
structure of the product order S ×Q.

(u,D) ≤S×Q (v,E) ⇐⇒ u ≤S v and D ⊆ E.
This order has the least element (q, ∅), which is written as ⊥. We write the poset

obtained by adding the top element ⊤ to S ×Q as P .
Note that the complement of (pi, D) is (p1−i, ∅). This is because pi and p1−i

are incomparable, so the common upper bound of (pi, D) and (p1−i, ∅) is only ⊤,
and moreover, (p1−i, ∅) only bounds ⊥ = (q, ∅). If D ̸= ∅, (q,D) does not have a
complement. This is because, for any (u,E), the non-top element (u,D∪E) <P ⊤
bounds (q,D) and (u,E). Indeed, this is the least upper bound, so this construction
always gives a lattice.

Now, given x, we construct η(x) = P such that

∀a∃b∀t. x(a, b, t) = 0 ⇐⇒ P is complemented.

As a modification of the above construction, we prepare for a new symbol εab for
each a, b. Here, we assume that εab is coded in a way that allows a, b ∈ ω to be
extracted. We say that a finite set E ⊆ ω is an (a, b)-refuter if either a ̸∈ E or
x(a, b, t) ̸= 0 for some t. In this case, let ta,b be the least t such that x(a, b, t) ̸= 0,
and put Ea

b = ⟨E, ta,b⟩. Here, if a ̸∈ E then Ea
b = ⟨E, 0⟩. Note that if both D and

E are (a, b)-refuters then any subset of D∪E is an (a, b)-refuter. In particular, the
empty set ∅ is always an (a, b)-refuter. Then we consider the following set:

Ref = {(εab , Da
b ) : D is an (a, b)-refuter}.

The decision of whether E is an (a, b)-refuter or not is not necessarily x-computable,
but the decision of (u, ⟨E, t⟩) ∈ Ref is x-computable (using the information on t).
Now consider S = {q} ∪ {εab : a, b ∈ ω}. Here, q is the bottom element of S, and
other elements of S are pairwise incomparable. A rough idea our proof strategy is
to consider S ×Q in the same way as before, but with a few corrections.

P = ({q} ×Q) ∪ Ref ∪ {⊤}
The order on {q} × Q is the product order. The order on the remaining parts

are generated by the following relations:

D ⊆ E =⇒ (q,D) ≤P (εab , D
a
b ) ≤P (εab , E

a
b ),

u ∈ P =⇒ u ≤P ⊤.
Here, D and E in the first line are (a, b)-refuters. Then let us analyze a

complement of each element of P . If (εab , D
a
b ) ∈ Ref, then its complement is

(εcd, ∅cd) for (c, d) ̸= (a, b). Here, as noted above, ∅ is always a (c, d)-refuter, so
(εcd, ∅cd) ∈ Ref ⊆ P . Note that εab and εcd are incomparable for (a, b) ̸= (c, d), so
the upper bound of (εab , D

a
b ) and (εcd, ∅cd) is only ⊤, and the lower bound is only

⊥ = (q, ∅).
Next consider (q,D) for D ̸= ∅. First, an element of the form (q, E) cannot be

a complement of (q,D), since they have an upper bound (q,D ∪E). Therefore, we
only need to discuss whether an element of the form (εab , E

a
b ) ∈ Ref is a complement.

If D is not an (a, b)-refuter, then we must have a ∈ D. Also, any C ⊇ D is not
an (a, b)-refuter, so in particular, (εab , C

a
b ) is undefined. Therefore, the upper bound

of (q,D) and (εab , E
a
b ) is only ⊤. The infimum is (q,D ∩ E). Thus, the infimum of
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(q,D) and (εab , ∅ab ) is ⊥ = (q, ∅), where we have (εab , ∅ab ) ∈ Ref since ∅ is always an
(a, b)-refuter as noted above. Hence, (εab , ∅ab ) is a complement of (q,D).

If D is an (a, b)-refuter, then (q,D) and (εab , E
a
b ) have an upper bound (εab , (D ∪

E)ab ) <P ⊤, since the union of two refuters is again a refuter as noted above. Hence,
(εab , E

a
b ) is not a complement of (q,D). Consequently, (q,D) has no complement iff

D is an (a, b)-refuter for any a, b (where we only need to consider a ∈ D).
Let a 7→ ba be a witness for ⟨∀∃∀⟩(x); that is, x(a, ba, t) = 0 for any a, t. To

find a witness for P = η(x) being complemented, it suffices to find a complement
of each element of the form (q,D) ∈ P . For each a ∈ D, D is not an (a, ba)-refuter,
so we can take (εaba , ∅

a
ba
) as a complement of (q,D) as discussed above.

Conversely, assume that a witness for Compl(P ) is given. In particular, we have
information on a complement of each (q, {a}). As discussed above, (q, {a}) has a
complement only if {a} is not an (a, b)-refuter for some b. Moreover, its complement
is necessarily of the form (εab , E

a
b ), and (a, b) can be extracted from εab . Since {a}

is not an (a, b)-refuter, we have x(a, b, t) = 0 for any t. Putting ba = b, the map
a 7→ ba gives a witness for ⟨∀∃∀⟩(x).

For the dual, let a be a witness for ⟨∃∀∃⟩(x). Then for any b there is t such that
x(a, b, t) ̸= 0, so in particular, {a} is an (a, b)-refuter for any b. Hence, (q, {a}) has
no complement in P .

Conversely, assume that a witness for P not being complemented is given. Such
a witness must be of the form (q,D) for some D ̸= ∅. By the above argument,
(q,D) has no complement only if D is an (a, b)-refuter for any (a, b). This means
that if a ∈ D then, for any b, there is t such that x(a, b, t) ̸= 0. Therefore, for
instance, a = minD is a witness for ⟨∃∀∃⟩(x). □

3.7. ∀↓∀∞: Asymptotic behavior. Interestingly, there is also an example of a
complete problem which is not dicomplete. As a concrete example, let us con-
sider the divergence problem Diverge. This is a problem that asks whether a given
sequence of natural numbers (xn)n∈ω diverges to infinity.

Diverge : ∀n∃s∀t ≥ s. xt ≥ n.
The divergence problem is ∀∀∞-complete, but the dual problem is not ∃∃∞-

complete, but ∀∞∃∞-complete.

Proposition 3.16. Diverge is ∀∀∞-complete.

Proof. Clearly, Diverge is a ∀∀∞-formula. To show ∀∀∞-completeness, given x =
(xn)n∈ω, we construct a sequence y = η(x) of natural numbers such that

∀n∀∞t. xn(t) = 0 ⇐⇒ y = (y(s))s∈ω diverges.

We construct y as follows:

y(s) = min{n ≤ s : xn(s) ̸= 0} ∪ {s}.
Let n 7→ sn be a witness for ⟨∀∀∞⟩(x); that is, x(t) = 0 for any t ≥ sn. Then,

for s′n = maxm<n sm, we have y(t) ≥ n for any t ≥ s′n. Therefore, n 7→ s′n is a
witness for divergence of y.

Conversely, let n 7→ tn be a witness for divergence of y; that is, y(s) ≥ n for any
s ≥ tn. This means that xm(s) = 0 for any m < n. In particular, for any s ≥ tn+1

we have xn(s) = 0, so n 7→ tn+1 is a witness for ⟨∀∀∞⟩(x). □

Proposition 3.17. Diverged is ∀∞∃∞-complete.
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Proof. For each sequence x = (x(s))s∈ω of natural numbers, we have the following
equivalences:

x = (x(s))s∈ω diverges ⇐⇒ ∀n∀∞s. x(s) ≥ n ⇐⇒ ∃∞n∀∞s. x(s) ≥ n.

This means Diverge ≤m ⟨∃∞∀∞⟩, and thus Diverged ≤m ⟨∀∞∃∞⟩. To show

⟨∀∞∃∞⟩ ≤m Diverged, given x = (xn)n∈ω, we construct a sequence y = η(x) of
natural numbers such that

∀∞n∃∞t. xn(t) ̸= 0 ⇐⇒ y = (y(s))s∈ω does not diverge.

For each n, s, we inductively define a parameter cn[s]. Put cn[0] = n, and
inductively assume that cn[s] is defined for each n ≤ s. Then check if the following
holds for c = cn[s].

∀m (n ≤ m ≤ c → |{t ≤ s : xm(t) ̸= 0}| ≥ c).(1)

Choose the least n ≤ s satisfying (1), and put y(s) = n, and cm[s+1] = cm[s]+1
for n ≤ m ≤ s + 1. If there is no such n, put y(s) = s. For m ≤ s + 1, put
cm[s + 1] = cm[s] if this has not yet been defined. Clearly, (n, s) 7→ cn[s] is
computable.

To see ∀∞∃∞-completeness of Diverged, let n be a witness for ⟨∀∞∃∞⟩(x); that
is, for any m ≥ n, there are infinitely many t such that xn(t) ̸= 0. Hence, for any
fixed c, the property (1) holds for almost all s. Also, since the value of c = cn[s]
does not change until this holds, (1) must hold. Then, our action ensures y(s) ≤ n.
This occurs for all c, which means that y(s) ≤ n for infinitely many s. Therefore,
n+ 1 is a witness for non-divergence of y.

Conversely, let n be a witness for non-divergence of y; that is, y(s) ≤ n for
infinitely many s. This means that (1) holds infinitely many times for n. Since the
value of c = cn[s] increases each time (1) holds for n, for this to be the case, there
must be infinitely many t such that xm(t) ̸= 0 for any m ≥ n. Hence, n is a witness
for ⟨∀∞∃∞⟩(x). □

Although we need to use some separation results proven later, let us present the
following results in advance.

Corollary 3.18. Diverge is not ∀∀∞-dicomplete, and Diverged is not ∀∞∃∞-dicomplete.

Proof. By Theorem 4.2 and Theorem 4.12, we have ⟨∀∞∃∞⟩ <m ⟨∃∃∞⟩, so by

Proposition 3.17, Diverged cannot be ∃∃∞-complete, which verifies the latter as-
sertion. By Theorem 4.2 and Proposition 4.10, we have ⟨∀∀∞⟩ <m ⟨∃∞∀∞⟩, so
Proposition 3.16, Diverge cannot be ∃∞∀∞-complete, which verifies the former as-
sertion. □

The question, therefore, is whether Diverge can be positioned as a dicomplete
problem for some class of formulas. The answer is, in a sense, affirmative, by
viewing Diverge as the intersection of a descending sequences of ∀∞-formulas.

Definition 3.19. A formula ψ(a, x) is descending if the following holds:

a′ ≤ a and ψ(a, x) =⇒ ψ(a′, x).

A ∀↓Q̄-formula is a formula of the form ∀aψ(a, x) for some descending Q̄-formula
ψ(a, x). The dual of a ∀↓Q̄-formula is called a ∃↑Q̄-formula.

Theorem 3.20. Diverge is ∀↓∀∞-dicomplete.



20 TAKAYUKI KIHARA

Proof. Clearly, Diverge is a ∀↓∀∞-formula. Let φ(x) be a ∀↓∀∞-formula, presented
as ∀n∀∞t.x(n, t) = 0 satisfying the following descending condition:

n′ ≤ n and ∀∞t. x(n, t) = 0 =⇒ ∀∞t. x(n′, t) = 0.

To show the ∀↓∀∞-completeness of Diverge, we can directly adopt the proof of
Proposition 3.16 (since φ is also a ∀∀∞-formula); that is, consider the following y:

y(s) = min{n ≤ s : x(n, s) ̸= 0} ∪ {s}.

For the dual, let n be a witness for φd(x). Then we have x(n, t) ̸= 0 for infinitely
many t, so y(t) ≤ n for such t. In particular, n+ 1 is a witness for non-divergence
of y.

Conversely, let n be a witness for non-divergence of y. Then y(t) < n for infinitely
many t, so for such t, we get x(m, t) ̸= 0 for some m < n. By the pigeon hole
principle, there is m < n such that x(m, t) ̸= 0 for infinitely many t. By the
contrapositive of the descending condition, we must have x(n, t) ̸= 0 for infinitely
many t. This means that n is a witness for φd(x). □

In fact, there are many natural problems which are ∀↓∀∞-dicomplete. Most
people first encounter Π3 formulas in elementary analysis; for instance, formulas
describing convergence, Cauchy sequences, etc. Analyzing these formulas carefully,
we realize that they are not just Π3 formulas, but ∀↓∀∞-formulas. To be explicit,
we consider the formula describing Cauchyness of a sequence (xn)n∈ω of rational
numbers:

Cauchy : ∀k∃N∀n,m ≥ N. |xn − xm| ≤
1

k + 1
Another example is related to the frequency of occurrence of 0 and 1 in a binary

sequence. For a binary string σ ∈ 2<ω, the frequency of occurrence of 1 in σ is
written as Freq1(σ).

Freq1(σ) =
#{k < n : σ(k) = 1}

n
.

An infinite binary seqeunce x ∈ 2ω is simply normal in base 2 if the frequencies
of occurrence of 0 and 1 in x ↾ n converge to 1

2 ; that is, limn→∞ Freq1(x ↾ n) = 1
2 .

The asymptotic density of a set A ⊆ ω is defined as follows:

δ(A) = lim
n→∞

Freq1(χA ↾ n) = lim
n→∞

#{k < n : k ∈ A}
n

For example, the formula expressing that the asymptotic density is 0 is also Π3.
These notions are formally expressed as follows:

SimpNormal : ∀k∃s∀t ≥ s.
∣∣∣∣Freq1(x ↾ t)− 1

2

∣∣∣∣ ≤ 1

k + 1
,

AsympDen0 : ∀k∃s∀t ≥ s. Freq1(x ↾ t) ≤ 1

k + 1
.

Theorem 3.21. Cauchy, SimpNormal, AsympDen0 are all ∀↓∀∞-dicomplete.

Proof. It is clear that all of these formulas are ∀↓∀∞.
Diverge ≤dm Cauchy: Given x = (xn)n∈ω, we construct a sequence y = η(x) of

natural numbers such that

x = (xt)t∈ω diverges ⇐⇒ y = (yt)t∈ω is a Cauchy sequence.
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Given x = (xt) ∈ ωω, for each t, if the same value as xt has already appeared
in (xs)s<t an even number of times, then put yt = 1

2xt+1 , and if it has appeared

an odd number of times, then yt =
1

2xt+2 . In other words, we make a distinction

between cases where |{s < t : xs = xt}| is even or odd. The values of the sequence
(yt)t∈ω are of the form 1

2n+i for i ∈ {1, 2}, so if this converges, it is of the form 0 or
1

2n+i . In order for the sequence to converge to 1
2n+i , almost all of yt must be this

value, but in this case, almost all of xt be the value n. However, if xt stabilizes to
n, then yt returns the values

1
2n+1 and 1

2n+2 alternately, so it does not have a limit.

Therefore, the sequence (yt)t∈ω cannot converge to a value other than 0.
Let n 7→ sn be a witness for Diverge(x); that is, xt ≥ n for any t ≥ sn. In

this case, we have yt ≤ 1
2n+1 for any t ≥ sn. Thus, n 7→ sn is also a witness for

Cauchy(y). Conversely, let n 7→ sn be a witness for Cauchy(y); that is, for any
k, ℓ ≥ sn we have |yk−yℓ| ≤ 1

n . In particular, y has a limit, but as discussed above,

in this case, y must converge to 0, so we get yt ≤ 2
n for any t ≥ sn. Considering

t ≥ s4(n+1), since
1

2xt+2 ≤ yt ≤ 1
2n+2 , we get xt ≥ n. Hence, n 7→ s4(n+1) is a

witness for Diverge(x).

For the dual, let n be a witness for Diverged(x); that is, xt < n for infinitely many
t. By the pigeon hole principle, there is m < n such that xt = m for infinitely many
t. In this case, (yt)t∈ω takes 1

2m+1 and 1
2m+2 for infinitely many t. In particular,

for any N , there exist k, ℓ ≥ N such that

|yk − yℓ| =
1

2m+ 1
− 1

2m+ 2
=

1

(2m+ 1)(2m+ 2)
>

1

(2n+ 1)(2n+ 2)
.

Hence, (2n + 1)(2n + 2) is a witness for Cauchyd(y). Conversely, let n be a

witness for Cauchyd(y). In this case, for m with n ≤ 2m+1, for any N , there exist
k, ℓ ≥ N such that |yk − yℓ| > 1

n ≥
1

2m+1 . If xk, xℓ ≥ m then our construction

ensures yk, yℓ ≤ 1
2m+1 , and in particular, |yk − yℓ| ≤ 1

2m+1 , but this is impossible.
Therefore, either xk < m or xℓ < m holds. Since N is arbitrary, there are infinitely
many such k, ℓ; hence, m is a witness for Diverged(x).

Diverge ≤dm AsympDen0: Given x = (xn)n∈ω, we construct a sequence y = η(x)
of natural numbers such that

x = (xt)t∈ω diverges ⇐⇒ the asymptotic density of {n : y(n) = 1} is 0.

Put u(0) = 1 and u(s + 1) = (s! + 1) · u(s). At step 0, put y(n) = 0 for any
n < u(2). For s ≥ 1, inductively assume that y ↾ u(s) has already been defined at
the beginning of step s. For k = min{xs + 2, s}, note that s!

k is a natural number
since k ≤ s. Then, consider the extension y ↾ u(s + 1) of y ↾ u(s) where the last
s!
k u(s) bits of y ↾ u(s+ 1) are all set to 1 and the rest are set to 0; that is,

y(t) =

{
0 if u(s) ≤ t <

(
1 + s!− s!

k

)
u(s)

1 if
(
1 + s!− s!

k

)
u(s) ≤ t < (1 + s!)u(s)

Now, let us calculate the number of occurrences of 1 in y ↾ u(s + 1). In the
above construction, exactly s!

k u(s) many new 1’s are added, and the number of 1’s
in y ↾ u(s) is at most u(s), so we get the following inequality:

s!

k
u(s) ≤ #{t < u(s+ 1) : y(t) = 1} ≤ u(s) + s!

k
u(s)
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Therefore, the frequency of occurrence of 1 is the result of dividing this by
u(s+1) = (s! + 1)u(s). Calculating this value, we first obtain the following for the
left-hand side:

s!

k
u(s) · 1

u(s+ 1)
=

s!

k(s! + 1)
=

s!

ks! + k
>

s!

ks! + s!
=

1

k + 1
.

Next, for k > 1 we get the following for the right-hand side:(
u(s) +

s!

k
u(s)

)
· 1

u(s+ 1)
=

k + s!

k(s! + 1)
=

(k − 1)s! + (k − 1)k

(k − 1)k(s! + 1)
<

1

k − 1
.

Here, note (k − 1)s! + (k − 1)k ≤ (k − 1)s! + s! = ks! for the last inequality.
Summarizing the above, we obtain the following inequality:

1

k + 1
< Freq1(y ↾ u(s+ 1)) <

1

k − 1
.

Also, in the construction of y ↾ u(s + 1), 1’s are added as a tail. Hence, if
u(s) < t ≤ u(s+ 1), then we get Freq1(y ↾ t) ≤ Freq1(y ↾ u(s+ 1)) < 1

k−1 .

Let n 7→ sn be a witness for Diverge(x); that is, xs ≥ n for any s ≥ sn. Put
tn = max{sn, n + 1}. If s ≥ tn then k = min{xs + 2, s} ≥ n + 1. By the above
argument, if u(s) < t ≤ u(s + 1) then we get Freq1(y ↾ t) < 1

k−1 ≤
1
n . This holds

for any t > u(tn). Hence, n 7→ u(tn) + 1 is a witness for AsympDen0(y).
Let n 7→ vn be a witness for AsympDen0(y); that is, Freq1(y ↾ t) ≤ 1

n for any
t ≥ vn. Calculate sn such that u(sn) ≥ vn. In particular, we have Freq1(y ↾
u(s+ 1)) ≤ 1

n for any s ≥ sn. For k = min{xs + 2, s}, by the above argument, we

have 1
k+1 < Freq1(y ↾ u(s + 1)) ≤ 1

n , so we get n < k + 1 ≤ xs + 3. This means

xs ≥ n− 2 for any s ≥ sn. Hence, n 7→ sn+2 is a witness for Diverge(x).

Let n be a witness for x ∈ Diverged; that is, xs < n for infinitely many s. For
such a large s > n, we have k = min{xs+2, s} = n+2. By the above argument, we

have Freq1(y ↾ u(s+1)) < 1
k−1 = 1

n+1 . Hence, n+1 is a witness for AsympDend0(x).

Let n be a witness for AsympDend0(x); that is, Freq1(y ↾ t) ≥ 1
n for infinitely many

t. For such t, take s such that u(s) < t ≤ u(s+1). By the above argument, we get
Freq1(y ↾ t) ≥ Freq1(y ↾ u(s+ 1)). Also, for k = min{xs + 2, s}, we have Freq1(y ↾
u(s + 1)) < 1

k−1 . Summarizing the above, we get 1
n ≤ Freq1(y ↾ u(s + 1)) < 1

k−1 ,
so k < n+ 1. If t is sufficiently large, s ≥ n+ 1. In this case, k ̸= s, so k = xs + 2
and thus, xs < n− 1. Hence, n− 1 is a witness for Diverged(x).

AsympDen0 ≤dm SimpNormal: Given x ∈ 2ω, consider the sequence y = η(x)
obtained by replacing the (2n+1)st occurrence of 0 in x with 1. If at is the number
of 1’s in x ↾ t, then the number of 1’s in y is approximately t−at

2 +at =
t+at

2 . To be
precise, this value is not necessarily a natural number, but it only differs from the
actual number by at most 1

2 . Therefore, calculating the error between Freq1(y ↾ t)
and 1

2 , we get the following:

Freq1(y ↾ t)− 1

2
≈ t+ at

2t
− 1

2
=
at
2t

=
Freq1(x ↾ t)

2
.

Here, ≈ is the equivalence with errors at most 1
2t . Using the above equation, it

is easy to construct a transformation of witnesses for ≤dm. □

It may be useful to keep in mind that all of these ∀↓∀∞-dicomplete problems are
related to limits.
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3.8. ∀∞∀∃: Global boundedness. Next, let us look for a ∀∞∀∃-complete prob-
lem. As a candidate, let us consider the problem FinDiam of determining whether
the diameter of a graph is finite. Here, the distance d(u, v) between two vertices
u, v in a graph G is the length of a shortest path connecting u and v. If there is
no path connecting u and v, then d(u, v) is defined to be ∞. Then the diameter
of a graph G = (V,E) is defined as max{d(u, v) : u, v ∈ V }. The finite-diameter
problem FinDiam is defined as follows:

FinDiam : ∃r∀u, v ∈ V ∃γ [(γ connects u and v) ∧ |γ| ≤ r].

Here, |γ| is the length of a path γ.

Proposition 3.22. FinDiam is ∀∞∀∃-complete.

Proof. First, in the definition of FinDiam, the quantification ∃r can be replaced with
∀∞r; thus, FinDiam ≤dm ⟨∀∞∀∃⟩. Therefore, it remains to show that ⟨∀∞∀∃⟩ ≤m

FinDiam. Given x = (xn,m)n,m∈ω, we construct a graph η(x) = (V,E) such that

∃r∀n ≥ r∀m∃t. xn,m(t) ̸= 0 ⇐⇒ the diameter of (V,E) is finite.

The graph has vertices ε ∈ V and an,ms ∈ V for any n,m ∈ ω and s ≤ n. For
each s < n, put (ε, an,m0 ), (an,ms , an,ms+1) ∈ E, which yields infinitely many paths of
length n+ 1 connecting ε and an,mn . Moreover, if xn,m(t) ̸= 0 for some t, then put
bn,mt ∈ V and (ε, bn,mt ), (an,ms , bn,mt ) ∈ E for each s ≤ n.

Let W = {(n,m) : ∃t. xn,m(t) ̸= 0}. If (n,m) ̸∈ W then the distance between
ε and an,mn is n + 1. If (n,m) ∈ W then the distance is 2 via bn,mt for some t,
since (ε, bn,mt ), (bn,mt , an,mn ) ∈ E. Indeed, the distance between any two vertices in
Sn,m := {ε, an,mn , bn,mt : xn,m(t) ̸= 0} is at most 2. Therefore, if (n,m), (n′,m′) ∈
W , the distance between any two vertices in Sn,m ∪ Sn′,m′ is at most 4.

Let r be a witness for ⟨∀∞∀∃⟩(x). Then, for any n ≥ r and m, we have (n,m) ∈
W . In this case, for any n ≥ r, the distance between any two vertices in Sn,m is
at most 2, and for n < r, the distance between any two vertices in Sn,m is at most
r. Therefore, the distance between any two vertices in this graph is at most 2r.
Hence, 2r is a witness for FinDiam(V,E).

Conversely, if r is a witness for FinDiam(V,E), then the distance between any
two vertices in this graph is at most r. Thus, for any n > r and m, we must have
(n,m) ∈W . This implies that r + 1 is a witness for ⟨∀∞∀∃⟩(x). □

However, there are difficulties with the completeness of the dual of FinDiam. For
this reason, let us consider a slightly modified problem. Note that, even if the
diameter is infinite, there can be an upper bound of the diameter of any connected
component.

The set of all paths of a graph G = (V,E) is denote by PathG, and for a path
γ ∈ PathG, its start point is denoted by γstart, and its end point is denoted by γend.
The bounded-diameter problem FinDiamconn for connected components is defined
as follows:

FinDiamconn : ∃r∀γ ∈ PathG∃δ ∈ PathG [{γstart, γend} = {δstart, δend} ∧ |δ| ≤ r].

This formula expresses that if two vertices a, b ∈ V belong to the same connected
component (that is, connected by a finite path γ) then the distance between a and
b is at most r (that is, connected by a path δ of length at most r).

Theorem 3.23. FinDiamconn is ∀∞∀∃-dicomplete.
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Proof. First, in the definition of FinDiamconn, the quantification ∃r can be replaced
with ∀∞r; thus, FinDiamconn ≤bm ⟨∀∞∀∃⟩. Therefore, it remains to show that
⟨∀∞∀∃⟩ ≤dm FinDiamconn. Given x = (xn,m)n,m∈ω, construct a graph η(x) = (V,E)
as follows:

∃r∀n ≥ r∀m∃t. xn,m(t) ̸= 0 ⇐⇒ (V,E) ∈ FinDiamconn.

The graph has vertices an,mℓ for any n,m ∈ ω and ℓ ≤ n. For each ℓ < n,
put (an,mℓ , an,mℓ+1 ) ∈ E, which yields infinitely many paths of length n connecting

an,m0 and an,mn . Moreover, if xn,m(t) ̸= 0 for some t, then put bn,mt ∈ V and
(an,mℓ , bn,mt ) ∈ E for each ℓ ≤ n.

Let W = {(n,m) : ∃t. xn,m(t) ̸= 0}. If (n,m) ̸∈ W then the distance between
an,m0 and an,mn is n. If (n,m) ∈ W then the distance between any two vertices in
Sn,m := {an,mn , bn,mt : xn,m(t) ̸= 0} is at most 2 via bn,mt .

Let r be a witness for ⟨∀∞∀∃⟩(x). Then, for any n ≥ r and m, we have (n,m) ∈
W . In this case, for any n ≥ r, the diameter of the connected component of an,m0

is at most 2, and for n < r, the diameter is at most r. Hence, r is a witness for
FinDiamconn(V,E).

Conversely, if r is a witness for FinDiamconn(V,E), then the diameter of any
connected component is at most r. Thus, for any n > r and m, we must have
(n,m) ∈W . This implies that r + 1 is a witness for ⟨∀∞∀∃⟩(x).

For the dual, let r 7→ (nr,mr) be a witness for ⟨∃∞∃∀⟩(x); that is, xnr,mr (t) = 0
for any t. In this case, we have (nr,mr) ̸∈ W , so the distance between anr,mr

0 and
anr,mr
nr

is nr ≥ r. Take any path γr connecting anr,mr

0 and anr,mr
nr

. Then r 7→ γr is

a witness for FinDiamd
conn(V,E).

Conversely, r 7→ γr is a witness for FinDiamd
conn(V,E); that is, the distance

between two end points of γr is at least r. The connected component containing the

path γr has a vertex of the form a
n(r),m(r)
0 . For r ≥ 3, we must have (n(r),m(r)) ̸∈

W . Then the end points of γr are of the forms a
n(r),m(r)
i and a

n(r),m(r)
j , whose

distance is at least r. Therefore, the distance between a
n(r),m(r)
0 and a

n(r),m(r)
n(r) is

n(r) ≥ r. Then r 7→ (n(r),m(r)) is a witness for ⟨∃∞∃∀⟩(x). □

The exact complexity of FinDiamd has not been determined yet, but we give a
lower bound here. From now on, FinDiamd is denoted by InfDiam.

Proposition 3.24. ⟨∀∀∞∀⟩ ≤m InfDiam.

Proof. By Observation 3.1, ⟨∀∀∞∀⟩ ≡m ∀Bdd, so it suffices to show ∀Bdd ≤m

InfDiam. By a construction similar to that of the reduction η in Proposition 3.22,
given x = (xn)n∈ω we can guarantee that η(x) = (V,E) satisfies the following:

∀n∃m∀t. xn(t) ≤ m ⇐⇒ the diameter of (V,E) is infinite.

The graph has vertices ε and an,mℓ for any n,m ∈ ω and ℓ ≤ n. For each ℓ < n,
put (ε, an,m0 ), (an,mℓ , an,mℓ+1 ) ∈ E, which yields infinitely many paths of length n + 1
connecting ε and an,mn . Moreover, for any k ≤ n and t, if xk(t) > m then the add
a new vertex bn,mk,t ∈ V , and put (ε, bn,mk,t ), (an,mℓ , bn,mk,t ) ∈ E for each ℓ ≤ n. Then

consider W = {(n,m) : ∃k ≤ n∃t. xk(t) > m} and Sn,m = {ε, an,mn , bn,mk,t : k ≤
n and xk(t) > m} as before. If (n,m) ̸∈ W then the distance between ε and an,mn

is n + 1. If (n,m) ∈ W then the distance between any two vertices in Sn,m is at
most 2 via some bn,mk,t .
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Let h be a witness for ∀Bdd(x); that is, xn(t) ≤ h(n) for any t. Putting m(n) =
maxk≤n h(k), we have xk(t) ≤ m(n) for any k ≤ n and t. Hence, (n,m(n)) ̸∈ W ,

so the distance between ε and a
n,m(n)
n is n + 1. Therefore, n 7→ (ε, a

n,m(n)
n ) is a

witness for InfDiam(V,E).
Conversely, let n 7→ (un, vn) be a witness for InfDiam(V,E); that is, the dis-

tance between un and vn is at least n. For r = max{n, 5}, compute indices
a(r), b(r), c(r), d(r) such that ur ∈ Sa(r),b(r) and vr ∈ Sc(r),d(r). These indices
are uniquely determined for vertices other than ε, and if it is ε, choose any indices.
Also, since ur ̸= vr, one of them is not ε. Since the distance between ur and vr are
at least 5 and ε ∈ Sa(r),b(r) ∩ Sc(r),d(r), the diameter of either Sa(r),b(r) or Sc(r),d(r)

is at least 3. If the diameter of Sa(r),b(r) is at least 3, then we have (a(r), b(r)) ̸∈W ;
that is, for any n ≤ a(r), xn(t) ≤ b(r) for any t.

Now, the distance between u2r and v2r is at least 2r, so the diameter of either
Sa(2r),b(2r) or Sc(2r),d(2r) is at least r. This implies that either a(2r) ≥ r and
(a(2r), b(2r)) ̸∈W or c(2r) ≥ r and (c(2r), d(2r)) ̸∈W .

Then put h(n) = max{b(2r), c(2r)}. If a(2r) ≥ r and (a(2r), b(2r)) ̸∈ W then,
since n ≤ r ≤ a(2r), we get xn(t) ≤ b(2r) for any t. Similarly, if c(2r) ≥ r and
(c(2r), d(2r)) ̸∈ W then we get xn(t) ≤ c(2r) for any t. In any case, we obtain
xn(t) ≤ h(n) for any t. Hence, h is a witness for ∀Bdd(x). □

Another lower bound is the disconnectedness problem DisConn for graphs, which
is the ∃∀-problem of determining whether a graph G = (V,E) is disconnected or
not.

DisConn : ∃u, v ∈ V ∀γ ∈ PathG. {γstart, γend} ̸= {u, v}.
In [13], it has been shown that ⟨∀∞∀⟩ <m DisConn <m ⟨∃∀⟩ holds. As we will

see later, DisConn and ⟨∀∀∞∀⟩ are incomparable.

Proposition 3.25. DisConn ≤m InfDiam.

Proof. Given a graph G = (V,E), consider its transitive closure G∗; that is, for any
γ connecting vertices u, v ∈ V , add a vertex aγ and edges (u, aγ), (aγ , v) to G

∗.
If G is connected then the diameter of G∗ is at most 2, and if G is disconnected

then the diameter of G∗ is infinite. Therefore, any witness (u, v) for disconnected-
ness of G is a witness for that the diameter of G∗ is at least r for any r.

Conversely, let (ur, vr)r∈ω be a witness for InfDiam(G∗); that is, the distance
between ur and vr is at least r. In particular, the distance between (u5, v5) is at
least 5. If u5 is a vertex of G then put u′5 = u5, and if u5 is of the form aγ then let
u′5 be one of the end points of the path γ. Note that the distance between (u5, u

′
5)

in G∗ is at most 1. In a similar manner, we also define v′5. Then u′5 and v′5 are
vertices of G. If u′5 and v′5 belong to the same connected component in G, then
the distance between (u′5, v

′
5) is at most 2 in G∗. Therefore, the distance between

(u5, v5) must be at most 4, which is impossible. Consequently, (u′5, v
′
5) is a witness

for disconnectedness of G. □

In the later Section 4.4, we will show that InfDiam is not ∃∞∃∀-complete, and in
particular, FinDiam is not ∀∞∀∃-dicomplete.

Let us look at another example of the ∀∞∀∃-dicomplete problem. The following
example is about a preorder ≤R generated by a binary relation R. In other words,
≤R is the reflexive transitive closure of R, or to be precise, the smallest binary
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relation that satisfies the following condition:

(a, b) ∈ R =⇒ a ≤R a, b ≤R b, a ≤R b; a ≤R b ≤R c =⇒ a ≤R c.

If we identify a binary relation R with a directed graph, then a ≤R b means
that there exists a directed path from a to b in R. The width of a preorder P is
the cardinality of a maximal antichain of P . If no such value exists, the width is
assumed to be infinite. The following is a problem that asks whether the width of
a preorder R∗ generated by a given binary relation R is finite.

FinWidth∗ : ∃r∀a1, . . . , ar ∈ R∃j < k ≤ r (aj ≤R ak or ak ≤R aj).

Note that there is one existential quantifier hidden inside this formula. In other
words, the above formula can be rewritten as follows.

FinWidth∗ : ∃r∀a1, . . . , ar ∈ R∃γ ∈ PathR∃i < j [{γstart, γend} = {ai, aj}].

Theorem 3.26. FinWidth∗ is ∀∞∀∃-dicomplete.

Proof. First, in the definition of FinWidth∗, the quantification ∃r can be replaced
with ∀∞r; thus, FinWidth∗ ≤dm ⟨∀∞∀∃⟩. Therefore, it remains to show ⟨∃∞∃∀⟩ ≤dm

FinWidthd∗. Given x = (xn,m)n,m∈ω, construct a binary relation η(x) = R as follows:

∀r∃n ≥ r∃m. xn,m = 0∞ ⇐⇒ the width of the preorder ≤R is infinite.

For each n,m, prepare (an,mi )i<n. If ⟨n,m⟩ < ⟨n′,m′⟩ with respect to the stan-

dard ordering of (pairs of) natural numbers, put an,mi <R an
′,m′

j for any i < n and

j < n′. For each n,m, for the first t such that xn,m(t) ̸= 0, add (bn,mi,t )i<n−1 so

that an,mi <R bn,mi,t <R an,mi+1 . Note that bn,mi,t is comparable with any other element

since bn,mi,t <R an,mn−1 <R an
′,m′

j if ⟨n,m⟩ < ⟨n′,m′⟩ and an
′,m′

j <R an,m0 <R bn,mi,t if

⟨n′,m′⟩ < ⟨n,m⟩.
Let (nr,mr)r∈ω be a witness for ⟨∃∞∃∀⟩(x), i.e., xnr,mr = 0∞. Then there is no

relation on (anr,mr

i )i<r; that is, (a
nr,mr

i )i<r is an antichain, so this is a witness for
that the width of the preorder ≤R is at least r.

Conversely, let r 7→ (cri )i<r be a witness for FinWidthd∗; that is, (cri )i<r is an-
tichain in ≤R. Consider r ≥ 2. Since (cri )i<r is an antichain and each bn,mk,t is

comparable with any other element, each cri must be of the form a
n(i),m(i)
k(i) . If

⟨n(i),m(i)⟩ ≠ ⟨n(j),m(j)⟩ for some i, j < r then cri is comparable with crj by our

construction. Hence, there exist n(r) and m(r) such that cri = a
n(r),m(r)
i for any i.

Since (cri )i<r is an antichain, this means xn(r),m(r) = 0∞. Therefore, r 7→ n(r),m(r)
is a witness for ⟨∃∞∃∀⟩(x).

A similar argument applies to the dual. □

Incidentally, as we will see later, the ∃∞∃∀-completeness and the ∀∃∀-completeness
coincide. Thus, some of the duals of the examples given in Section 3.8 are ∀∃∀-
complete. However, interestingly, assuming the later results, one can see that these
are ∀∃∀-complete but not ∀∃∀-dicomplete, by showing that ∃∞∃∀-dicompleteness
and the ∀∃∀-dicompleteness do not coincide.

Proposition 3.27. FinDiamd
conn and FinWidthd∗ are ∀∃∀-complete, but not ∀∃∀-

dicomplete.
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Proof. Let F be either FinDiamd
conn or FinWidthd∗. By Theorem 3.23 and Theorem

3.26, F is ∃∞∃∀-dicomplete. By Theorem 4.2 (4) proven later, we get ⟨∀∃∀⟩ ≡m

⟨∃∞∃∀⟩, so F is ∀∃∀-complete. For the dual, we have Fd ≤m ⟨∀∞∀∃⟩, and by
Proposition 4.10 proven later, we get ⟨∨∀⟩ ̸≤m ⟨∀∞∀∃⟩. However, we also have
⟨∨∀⟩ ≤m ⟨∃∀∃⟩; hence we get ⟨∃∀∃⟩ ̸≤m Fd. Therefore, F cannot be ∀∃∀-dicomplete.

□

3.9. ∀∃∀: Independent alternation of quantifiers. Although there are many
known classical Π3-complete problems, of those we have already seen, the only one
that is ∀∃∀-dicomplete is the complementedness problem Compl. Thus, it seems
that examples of ∀∃∀-dicomplete problems about a single structure are somewhat
rare. However, there is a simple way to find a ∀∃∀-dicomplete problem. This is to
consider a sequence of structures rather than a single structure. In Proposition 2.15,
we have introduced the addition Pφ of a quantifier P to an arithmetical formula φ.
In particular, the formula ∀φ is described as follows:

(∀φ)(⟨xn⟩n∈ω) ≡ ∀nφ(xn).

Observation 3.28. If a formula φ is ∃∀-complete, then ∀φ is ∀∃∀-dicomplete.

Proof. As seen in the proof of Proposition 2.21, if φ ≤dm ψ then Pφ ≤dm Pψ.
In particular, ⟨∃∀⟩ ≤dm ψ implies ⟨∀∃∀⟩ ≤dm ∀ψ. By our assumption, since φ is
∃∀-complete, we have ⟨∃∀⟩ ≤m φ via some η; that is, ⟨∀∃⟩(x) holds if and only if
φd(η(x)) holds. For a ∀∃-formula ψ, one can always compute its witness for ψ(x), so
we automatically obtain ⟨∀∃⟩ ≤m φd. Therefore, we get ⟨∃∀⟩ ≤dm φ, which implies
⟨∀∃∀⟩ ≤dm ∀φ as mentioned above. □

In order to obtain a ∀∃∀-dicomplete problem, consider the following formula
concerning density of a linear order L.

Dense : ∀a, b ∈ L∃c ∈ L (a <L b→ a <L c <L b).

Clearly, Dense is a ∀∃-formula, so its dual Densed is a ∃∀-formula. Therefore,
∀(Densed) is a ∀∃∀-formula. The decision problem ∀(Densed) is the problem of
determining whether or not “all Ln are not dense” for a sequence L = (Ln)n∈ω of
linear orders.

∀(Densed)(L) ⇐⇒ Ln is not dense for any n.

Corollary 3.29. ∀(Densed) is ∀∃∀-dicomplete.

Proof. It is shown in [13] that Densed is ∃∀-complete. Hence, by Observation 3.28,

∀(Densed) is ∀∃∀-complete. □

3.10. ∀→∃∀: Restricting range of quantification. In everyday mathematics,
the range of quantification is often specified. For example, we usually consider
expressions such as ∀x ∈ Aφ(x) and ∃x ∈ Aφ(x). These two quantifications are
abbreviations for the following expressions, respectively.

∀x (x ∈ A→ φ(x)), ∃x (x ∈ A ∧ φ(x)).

Of course, we fix the domain of discourse (i.e., the set over which x runs) to
the natural numbers. However, even if we are considering a specific domain of
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discourse, we do not necessarily quantify over the entire domain; that is, the quan-
tification range is often limited by some condition γ. To be explicit, we often
consider formulas of the following form.

∀x (γ(x)→ φ(x, y)), ∃x (γ(x) ∧ φ(x, y)).
Some of the decision problems we have dealt with so far also have such partial

quantifications if we formalize them directly. However, in any of the previous ex-
amples, such γ is a bounded formula, so we can move it to the innermost part of
the formula, which allows us to formalize it in a way that excludes partial quantifi-
cation. Of course, this is not always possible. Often, γ is a complicated formula,
and in such cases, the quantification over γ cannot be removed. Let us take up
such an example.

A tree T ⊆ 2<ω is perfect if T has no isolated infinite path. We say that a node
σ ∈ T is extendible if there is an infinite path through T extending σ. Classically,
a tree is perfect iff any extendible node of T can be extended to two incomparable
extendible nodes of T . This involves the quantification over extendible nodes, and
there is no need to consider other nodes. If T is a binary tree, under the assumption
of weak König’s lemma, the extendibility of a node σ ∈ T is equivalent to the
following:

Ext(σ, T ) ≡ ∀ℓ∃τ ∈ 2ℓ. τ ∈ T
Note that τ ranges over a finite set, so the inner existential formula is a bounded

formula. Thus, the extendibility of a node is described by a ∀-formula. Then, the
perfectness of a binary tree can be described as follows:

Perfectbin : ∀σ ∈ T [Ext(σ, T )→ ∃τ0, τ1 ∈ T (τ0⊥τ1 ∧ ∀i < 2. Ext(τi, T ))].

Here, τ0⊥τ1 denotes that nodes τ0, τ1 are incomparable. In the definition of
the perfectness of a binary tree, the quantification range of σ is restricted by a
∀-formula. That is, it is of the type ∀(∀ → ∃∀) in the following sense.

∀a[∀bγ(a, b, x)→ ∃c∀dθ(a, c, d, x)].
Here, γ, θ are bounded formulas. We call the formula of this form a ∀→∃∀-

formula, and its dual (i.e., a formula of the following form) a ∃∧∀∃-formula.

∃a[∀bγ(a, b, x) ∧ ∀c∃dθ(a, c, d, x)].

Theorem 3.30. Perfectbin is ∀→∃∀-dicomplete.

Proof. Given (p, x) = (pn, x
n
m)n,m∈ω, construct a binary tree T = η(p, x) ⊆ 2<ω as

follows:
∀n (pn = 0∞ → ∃m. xnm = 0∞) ⇐⇒ T is perfect.

Here, note that the left-hand side expresses a ∀→∃∀-complete formula ⟨∀→∃∀⟩(p, x).
Its witness is a partial function n 7→ m.

First put T0 = {0n, 0n10σ : n ∈ ω, σ ∈ 2<ω} ⊆ T . Next, for each n, put
0n110s ∈ T for any s ∈ ω until we see pn ̸= 0∞. For each m, put 0n110⟨m,s⟩1σ for
any s ∈ ω and σ ∈ 2<ω until we see pn ̸= 0∞ or xnm ̸= 0∞. Note that, for each
σ ∈ T0, the extensions σ0 and σ1 are extendible since 0n10α is an infinite path
through T0 for any n ∈ ω and α ∈ 2ω. Therefore, let us focus on the behavior of
σ ̸∈ T0.

Let n 7→ mn be a witness for ⟨∀→∃∀⟩(p, x); that is, if pn = 0∞ then xnmn
= 0∞. In

this case, we show that each extendible node can be extended to two incomparable
extendible nodes. As discussed above, we only need to consider σ ̸∈ T0. Note
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that if pn ̸= 0∞ then 0n11 is not extendible in T . If σ ∈ T is a node of the form
σ = 0n110s and if it is extendible, then we must have pn = 0∞; hence, xnmn

= 0∞.
In this case, take a sufficiently large k such that t = ⟨mn, k⟩ ≥ s. Then σ = 0n110s

is extended to 0n110t, which is extended to 0n110t0∞ and 0n110t1∞. Then consider
γ(σ) = ⟨0n110t0, 0n110t1⟩. If σ ∈ T is a node of the form σ = 0n110⟨m,k⟩1τ and
if it is extendible, we must have pn = 0∞ and xnm = 0∞. In this case, σ is clearly
extendible to σ0∞ = 0n110⟨m,k⟩1τ0∞ and σ1∞ = 0n110⟨m,k⟩1τ1∞. Then consider
γ(σ) = ⟨σ0, σ1⟩. Then, σ 7→ γ(σ) gives a witness for Perfectbin(T ).

Conversely, let σ 7→ τσ0 , τ
σ
1 be a witness for Perfectbin(T ). Given n, consider

σ = 0n11. If pn = 0∞ then σ = 0n11 is extendible, so τσ0 and τσ1 are defined. Since
τσ0 and τσ1 are incomparable extensions of σ, either τσ0 or τσ1 extend 0n110⟨m,k⟩1 for
some m, k. Since τσ0 and τσ1 are extendible, this implies xnm = 0∞. Thus, n 7→ m
witnesses ⟨∀→∃∀⟩(p, x).

For the dual, let n be a witness for ⟨∃∧∀∃⟩(p, x); that is, pn = 0∞ and xnm ̸= 0∞

for any m ∈ ω. As pn = 0∞, the node 0n11 is extendible to 0n110∞. For each m,
since xnm ̸= 0∞, the node 0n110⟨m,k⟩1 is not extendible. Hence, the only infinite

path that extends 0n11 is 0n110∞. Therefore, 0n11 is a witness for Perfectd(T ).

Conversely, let σ be a witness for Perfectd(T ); that is, there is exactly one infinite
path extending σ. As mentioned above, σ ̸∈ T0. If σ is of the form 0n110s, since
σ is extendible, we have pn = 0∞. Moreover, in this case, σ is extendible to
0n110∞. Since σ is a witness for T being non-perfect, there is no other infinite path
through T extending σ; hence, 0n110⟨m,k⟩1 is not extendible for any ⟨m, k⟩ ≥ s.
In particular, for any m, 0n110⟨m,k⟩1 is not extendible for a sufficiently large k,
which implies xnm ̸= 0∞ for any m. If σ is of the form σ = 0n110⟨m,k⟩1τ , since
σ is extendible, we must have pn = 0∞ and xnm = 0∞; however, in this case, for
any α ∈ 2ω, σ = 0n110⟨m,k⟩1τα is an infinite path through T , which contradicts
our assumption that σ is a witness for T being non-perfect. Consequently, if σ is
a witness for Perfectd(T ), then it is of the form 0n110s, and in this case, n is a
witness for ⟨∃∧∀∃⟩(p, x). □

In Section 4.3, we show ⟨∀∃∀⟩ <m ⟨∀→∃∀⟩.

4. The structure of quantifier-patterns

4.1. Equivalence. Example 2.5 presents sixteen Σ3 quantifier-patterns. However,
not all of these are different, and we can expect that many of them are equivalent.
What we want to know is exactly how many Σ3- and Π3-patterns there are (modulo
the many-one equivalence).

A quantifier-pattern Q̄ is m-equivalent to Q̄′ if ⟨Q̄⟩ ≡m ⟨Q̄′⟩. Similarly, a
quantifier-pattern Q̄ is dm-equivalent to Q̄′ if ⟨Q̄⟩ ≡dm ⟨Q̄′⟩. Note that dm-reducibility
for Σ3- and Π3-patterns are completely the same, so it is sufficient to consider only
one of them. Our main result in this section is the following:

Theorem 4.1. Any Σ3 quantifier-pattern is m-equivalent to one of the following 3
patterns:

∃∀∃, ∀∞∃∞, ∀∞∃.
Any Π3 quantifier-pattern is m-equivalent to one of the following 5 patterns:

∀∃∀, ∃∞∀∞∀, ∃∞∀, ∀∀∞∀, ∀∀∞.
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Figure 4. (left) The ≡m-degrees of Σ3-patterns; (center) The ≡m-
degrees of Π3-patterns; (right) The ≡dm-degrees of Π3-patterns.

Any Π3 quantifier-pattern is dm-equivalent to one of the following 7 patterns:

∀∃∀, ∃∞∃∀, ∃∞∀∞∀, ∃∞∀∞,∃∞∀, ∀∀∞∀, ∀∀∞.

Figure 4 shows, from left to right, the ≡m-degrees of Σ3 quantifier-patterns,
the ≡m quantifier-degrees of Π3-patterns, and the ≡dm-degrees of Π3 quantifier-
patterns. In Section 4.2, we will show that Figure 4 is complete (that is, no further
arrow is added).

In order to prove Theorem 4.1, it is necessary to check which quantifier-patterns
are ≡m-equivalent.

Theorem 4.2.

(1) ⟨∃∀∃⟩ ≡dm ⟨∃∀∃∞⟩ ≡dm ⟨∃∀∞∃∞⟩ ≡dm ⟨∃∀∞∃⟩.
(2) ⟨∃∀∃⟩ ≡m ⟨∃∃∞∃⟩ ≡m ⟨∃∃∞⟩.
(3) ⟨∀∞∀∃⟩ ≡m ⟨∀∞∀∃∞⟩ ≡m ⟨∀∞∃∞∃⟩ ≡m ⟨∀∞∃∞⟩.
(4) ⟨∀∃∀⟩ ≡m ⟨∃∞∃∀⟩ ≡m ⟨∃∞∃∀∞⟩.
(5) ⟨∃∞∀∞⟩ ≡m ⟨∃∞∀⟩.

We first give a proof of the relatively trivial parts that follows from the observa-
tions so far.

Proof of Theorem 4.2 (2), (3). A witness for a ∀∃-formula is always computable,
so we get ⟨∀∃⟩ ≡m ⟨∀∃∞⟩ ≡m ⟨∃∞∃⟩ ≡m ⟨∃∞⟩. Then, by adding the quantifiers ∃
and ∀∞ to the prefix, we get (2) and (3) by Lemma 2.23. □

The proof of this theorem is divided into several propositions.

Proposition 4.3. ⟨∃∀∃⟩ ≤dm ⟨∃∀∞∃⟩.

Proof. Given x = (xn)n∈ω, we construct y = η(x) such that

∃n∀t. xn(t) ̸= 0∞ ⇐⇒ ∃n∀∞t. yn(t) ̸= 0∞.

The left-hand side means that ⟨∃∀∃⟩(x) is true, and the right-hand side means
that ⟨∃∀∞∃⟩(y) is true. For t, u, define yn(⟨t, u⟩) = xn(t). Then, the property
∃t xn(t) = 0∞ is classically equivalent to ∃∞t yn(t) = 0∞, so n is a witness for the
former iff it is a witness for the latter. This implies ⟨∃∀∃⟩ ≤m ⟨∃∀∞∃⟩.

For the dual ⟨∀∃∀⟩ ≤m ⟨∀∃∞∀⟩, let n 7→ tn be a witness for ⟨∀∃∀⟩(x), i.e.,
xn(tn) = 0∞. Then yn(⟨tn, u⟩) = 0∞ for any u by definition, so n 7→ (⟨tn, u⟩)u∈ω is a
witness for ⟨∀∃∞∀⟩(y). Conversely, let n 7→ (tni , u

n
i )i∈ω be a witness for ⟨∀∃∞∀⟩(y).
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Then yn(⟨tni , uni ⟩) = 0∞; thus, in particular, we get xn(t
n
0 ) = 0∞. Hence, n 7→ tn0

gives a witness for ⟨∀∃∀⟩(x). □

Proof of Theorem 4.2 (1). First we have the absorption relation ∃∀∞∃∞ → ∃∃∀∃∞ →
∃∀∃∞ → ∃∀∀∃ → ∃∀∃. Therefore, by Observation 2.22, we get ⟨∃∀∞∃∞⟩ ≤dm

⟨∃∀∃∞⟩ ≤dm ⟨∃∀∃⟩. Moreover, by Proposition 2.25, ⟨Q̄∃⟩ ≤bm ⟨Q̄∃∞⟩, and thus,
⟨∃∀∞∃⟩ ≤bm ⟨∃∀∞∃∞⟩. Then, by Proposition 4.3, we get ⟨∃∀∃⟩ ≤bm ⟨∃∀∞∃⟩. This
completes the proof. □

Proposition 4.4. ⟨∀∃∀⟩ ≤m ⟨∃∞∃∀⟩.

Proof. Given x = (xn)n∈ω, we construct y = η(x) such that

∀n∃m∀s. xn(m, s) = 0 ⇐⇒ ∃∞n∃σ∀s. yn(σ, s) = 0.

The left-hand side means that ⟨∀∃∀⟩(x) is true, and the right-hand side means
that ⟨∃∞∃∀⟩(y) is true. Given s and a sequence σ of length n+1, define yn(σ, s) =
maxi≤n xi(σ(i), s). Now let n 7→ mn be a witness for ⟨∀∃∀⟩(x); that is, xn(mn, s) =
0 for any s. For each n, consider σn = (mi)i≤n. Then yn(σn, s) = maxi≤n xi(mi, s) =
0 for any s. Hence, n 7→ (n, σn) is a witness for ⟨∃∞∃∀⟩(y).

Conversely, let n 7→ (a(n), σn) be a witness for ⟨∃∞∃∀⟩(y); that is, ya(n)(σn, s) =
0 for any s. Then, for any m, there exists nm such that m ≤ a(nm). By definition,
xm(σnm(m), s) ≤ ya(nm)(σnm , s) = 0 for any s. Hence, m 7→ σnm is a witness for
⟨∀∃∀⟩(x). □

Proposition 4.5. ⟨∃∞∀∞⟩ ≤m ⟨∃∞∀⟩.

Proof. Given x = (xn)n∈ω, we construct y = η(x) such that

∃∞n∃s∀t ≥ s. xn(t) = 0 ⇐⇒ ∃∞n. yn = 0∞.

The left-hand side means that ⟨∃∞∀∞⟩(x) is true, and the right-hand side means
that ⟨∃∞∀⟩(y) is true. For an increasing sequence σ = ⟨n0, . . . , nℓ⟩ and a sequence
τ = ⟨s0, . . . , sℓ⟩, we construct an infinite sequence yσ,τ . We want to ensure that
yσ,τ = 0∞ iff, for any i < |τ |, si is the least witness for ⟨∀∞⟩(xni). The construction
procedure of yσ,τ checks if τ is the least witness for σ in the above sense. To be
precise, until the minimality is refuted, inductively assume that yσ,τ is the initial
segment of 0∞ of length s, at each stage s. If the minimality is refuted; that is,
there exists i ≤ ℓ and t < si such that xni(t) = 0 for any u ∈ [t, si), then the
construction ensures yσ,τ ̸= 0∞ by putting yσ,τ (u) ̸= 0 for u ≥ s. Otherwise, τ is
still the least witness for σ, so yσ,τ is now the initial segment of 0∞ of length s+1.

Now let (ni, si)i∈ω be a witness for ⟨∃∞∀∞⟩(x); that is, ni ≥ i and xni(t) = 0
for any t ≥ si. By taking a subsequence, without loss of generality, we may assume
that (ni)i∈ω is a strictly increasing sequence. Moreover, from the information on
(si)i∈ω one can obtain the least witnesses (s′i)i∈ω by taking s′i = min{s : ∀t ∈
[s, si]. xni(t) = 0}. By our construction, we have y(ni)i≤ℓ,(s

′
i)i≤ℓ

= 0∞ for any ℓ.

Hence, ℓ 7→ ((ni)i≤ℓ, (s
′
i)i≤ℓ) is a witness for ⟨∃∞∀⟩(y).

Conversely, let (σi, τi)i∈ω be a witness for ⟨∃∞∀⟩(y), i.e., yσi,τi = 0∞. Then,
note that there are infinitely many numbers that appear in (σi)i∈ω. Otherwise,
{σi(k) : i ∈ ω, k < |σi|} is finite, and each σi corresponds to its finite subset, so
{σi : i ∈ ω} is finite. However, for each σi, τi is the corresponding least witness, so
it is unique by minimality. In other words, if σi = σj , then τi = τj , but this means
that {σi, τi : i ∈ ω} is finite. However, this is a witness for ∃∞, so this cannot be
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the case. Hence, for any n, search for i, k such that σi(k) > n and put mn = σi(k).
By definition, we have xmn(t) = 0 for any t ≥ τi(k), so put sn = τi(k). Hence,
n 7→ (mn, sn) is a witness for ⟨∃∞∀∞⟩(x); that is, mn ≥ n and xmn(t) = 0 for any
t ≥ sn. □

Proof of Theorem 4.2 (4), (5). First we have the absorption relation ∃∞∃∀∞ →
∃∞∃∃∀ → ∃∞∃∀ → ∀∃∃∀ → ∀∃∀. Therefore, by Observation 2.22, we get ⟨∃∞∃∀∞⟩ ≤dm

⟨∃∞∃∀⟩ ≤dm ⟨∀∃∀⟩. Moreover, by Proposition 2.25, ⟨Q̄∀⟩ ≤dm ⟨Q̄∀∞⟩, and thus,
⟨∃∞∃∀⟩ ≤dm ⟨∃∞∃∀∞⟩. Then, by Proposition 4.4, we get ⟨∀∃∀⟩ ≤m ⟨∃∞∃∀⟩. This
verifies the item (4).

Similarly, by Proposition 2.25, we have ⟨∃∞∀⟩ ≤dm ⟨∃∞∀∞⟩ and by Proposition
4.5 we get ⟨∃∞∀∞⟩ ≤m ⟨∃∞∀⟩. This verifies the item (5). □

There are several other reducibility results, so let us mention them here.

Proposition 4.6. ⟨∀∀∞∀⟩ ≤m ⟨∃∞∀∞∀⟩.

Proof. As in Observation 3.1, we have ⟨∀∀∞∀⟩ ≡dm ∀Bdd and ⟨∃∞∀∞∀⟩ ≡dm

∃∞Bdd. Hence, it suffices to show ∀Bdd ≤m ∃∞Bdd. Given x = (xn)n∈ω, we
construct y = η(x) such that

∀n∃b∀t. xn(t) ≤ b ⇐⇒ ∃∞n∃b. yn(t) ≤ b.
The left-hand side means that ∀Bdd(x) is true, and the right-hand side means

that ∃∞Bdd(y) is true. Define yn(t) = maxi≤n xi(t). Let b = (bn)n∈ω be a witness
for ∀Bdd(x); that is, bn is an upper bound for xn. Clearly, the maximum cn =
maxi≤n bi of upper bounds of (xi)i≤n is an upper bound of yn. Conversely, if
we have upper bounds for yn for infinitely many n; that is, we have k such that
k(n) ≥ n and cn is an upper bound for yk(n) for any n. Then cn is also an upper
bound for xn. □

Proposition 4.7. ⟨∀∀∞⟩ ≤m ⟨∃∞∀∞⟩.

Proof. Given x = (xn)n∈ω, we construct y = η(x) such that

∀n∀∞t. xn(t) = 0 ⇐⇒ ∃∞n∀∞t. yn(t) = 0.

Again, we define yn(t) = maxi≤n xi(t). Let n 7→ tn be a witness for ⟨∀∀∞⟩(x).
Then one can easily see that n 7→ (n,maxi≤n tn) is a witness for ⟨∃∞∀∞⟩(y). Con-
versely, let n 7→ (a(n), sn) be a witness for y ∈ ⟨∃∞∀∞⟩; that is, ya(n)(t) = 0 for
any t ≥ sn, and for any m there is nm such that m ≤ a(nm). By definition, we have
xm(t) ≤ ya(nm)(t) = 0. In particular, xm(t) = 0 for any t ≥ snm . Hence, m 7→ snm

is a witness for ⟨∀∀∞⟩(x). □

Using the above, we can now see that all of the Σ3- and Π3-patterns have already
been presented in Figure 4.

Proof of Theorem 4.1. Let E be the set of all quantifier-patterns presented in Ex-
ample 2.5. By Proposition 2.9, any Σ3-pattern Q̄ is absorbable into some P̄ ∈ E
and vice versa, so by Observation 2.22 we have Q̄ ≡dm P̄. Now let us see that any
quantifier-pattern Q̄ ∈ E of length 4 or more is dm-equivalent to a quantifier-pattern
of length at most 3. Any such pattern Q̄, except for ∀∞∀∃∞∃, contains either
∃∀∃ or ∃∀∞∃∞ as a subpattern, so by Theorem 4.2 (1), we get ⟨∃∀∃⟩ ≤dm ⟨Q̄⟩.
If Q̄ is a Σ3-pattern, then it is clearly absorbable into ∃∀∃, so by Observation
2.22, we get ⟨Q̄⟩ ≡dm ⟨∃∀∃⟩. For Q̄ = ∀∞∀∃∞∃, we have the absorption relations
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∀∞∀∃∞∃ → ∀∞∀∀∃∃ → ∀∞∀∃ and ∀∞∀∃ → ∀∞∀∃∞∃, so by Observation 2.22 we
get ⟨∀∞∀∃⟩ ≡dm ⟨∀∞∀∃∞∃⟩.

Thus, every Σ3-pattern is dm-equivalent to a pattern P̄ ∈ E of length at most 3,
and every Π3-pattern is dm-equivalent to the P̄d of a pattern P̄ ∈ E of length at most
3. Any pattern P̄ ∈ E of length at most 3 has already been presented in the left
diagram of Figure 3. First, by Theorem 4.2 (1),(2), all the patterns belonging to the
polygon in the left diagram of Figure 3 are m-equivalent. Moreover, by Theorem
4.2 (3), all the patterns belonging to the ellipse in the left diagram of Figure 3 are
m-equivalent. Similarly, any pattern which is the dual of some P̄ ∈ E of length at
most 3 has already been presented in the right diagram in Figure 3. By Theorem
4.2 (1),(4), all the patterns belonging to the polygon in the right diagram of Figure
3 are m-equivalent. Finally, by Theorem 4.2 (5), all the patterns belonging to the
ellipse in the right diagram of Figure 3 are m-equivalent. Therefore, the structures
of the Σ3- and Π3-patterns in Figure 3 collapse as shown in Figure 4, and only the
three ≡m-classes of Σ3-patterns and five ≡m-classes of Π3-patterns survive.

Now, consider the number of dm-equivalence classes of Π3-patterns. For the
same reason as above, we only need to consider the duals of quantifier-patterns
of length at most 3 that belong to E . By Theorem 4.2, all the patterns in the
common part of the polygonal regions in the left and right diagrams of Figure 3
are ≡dm-equivalent. Also, the proof of Theorem 4.2 (4) actually shows ⟨∃∞∃∀⟩ ≡dm

⟨∃∞∃∀∞⟩. Therefore, the polygonal region in the right diagram of Figure 3 is
divided into at most two ≡dm-equivalence classes. Together with the other five
quantifier-patterns, this gives at most seven ≡dm-equivalence classes. □
4.2. Separation. In order to argue that the classification of formulas based on
quantifier-patterns is meaningful, we should show that quantifier-patterns provide
a separation of many-one complexity. Below the disjunction ∨ is always expressed
by the quantifier ∃i ∈ {0, 1}. Then, the ∨∀-complete problem ⟨∨∀⟩ is given as
follows:

x0 = 0∞ ∨ x1 = 0∞.

Definition 4.8 ([13]). A formula φ is amalgamable if there exists a partial com-
putable function κ such that if at least one of a0, . . . , aℓ is a witness for φ(x), then
κ(a0, . . . , aℓ, x) is a witness for φ(x).

Lemma 4.9 ([13]). If φ is amalgamable, then ⟨∨∀⟩ ̸≤m φ.

Proposition 4.10. ⟨∨∀⟩ ̸≤m ⟨∀∞∀∃⟩.

Proof. By Lemma 4.9, it suffices to show that ⟨∀∞∀∃⟩ is amalgamable. Note that
a ∀∞∀∃-complete problem is of the following form:

∃n∀m ≥ n∀k∃ℓ. x(m, k, ℓ) ̸= 0

Note that a witness for the ∀∃-part can be computably recovered, so the essential
information in a witness is only the ∃n part. Also, if n is a witness for the above
formula, then so is any n′ ≥ n. To show amalgamability, assume that at least one
of a0, . . . , aℓ is a witness for the above formula. Then, maxi≤ℓ ai must also be a
witness. Hence, by considering κ(a0, . . . , aℓ, x) = maxi≤ℓ ai, conclude that ⟨∀∞∀∃⟩
is amalgamable. □

This shows ⟨∀∞∀∃⟩ ≡m ⟨∀∞∃∞⟩ <m ⟨∃∀∃⟩ since clearly ⟨∨∀⟩ <m ⟨∃∀∃⟩.

Proposition 4.11. ⟨∨∀⟩ ̸≤m ⟨∀∀∞∀⟩.
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Proof. By Lemma 4.9, it suffices to show that ⟨∀∀∞∀⟩ is amalgamable. Note that
a ∀∀∞∀-complete problem is of the following form:

∀n∃s∀t ≥ s. xn(t) = 0∞.

A witness for the above formula is of the form n 7→ s, so it is a function f : ω → ω.
Moreover, if f is a witness for the above formula, then so is any g majorizing f
(i.e., g(n) ≥ f(n) for any n). To show amalgamability, assume that at least one
of f0, . . . , fℓ is a witness for the above formula. Define κ(f0, . . . , fℓ, x) = g by
g(n) = maxi≤ℓ fi(n). Then g majorizes any fi, so g is a witness for the above
formula. This shows that ⟨∀∀∞∀⟩ is amalgamable. □

Note that one can easily see ⟨∨∀⟩ ≤m ⟨∃∞∀⟩ by considering y2n = x0 and
y2n+1 = x1. Hence, we get ⟨∃∞∀⟩ ̸≤m ⟨∀∀∞∀⟩.

Theorem 4.12. ⟨∀∞∃∞⟩ ̸≤m ⟨∀∞∃⟩.

Proof. Assume ⟨∀∞∃∞⟩ ≤m ⟨∀∞∃⟩ via η, r−, r+. In particular, for any x = (xn)n∈ω

and y = η(x), we have the following:

∀∞n∃∞t. xn(t) ̸= 0 ⇐⇒ ∀∞n∃t. yn(t) ̸= 0.

For each n, begin with xn = 1∞. Then, for instance, 0 is a witness for ⟨∀∞∃∞⟩(x).
Hence, a = r−(0, x) is a witness for ⟨∀∞∃⟩(y). Then n = r+(a, x) is a witness for
⟨∀∞∃∞⟩(x), which means that, for any m ≥ n, xm has infinitely many nonzero
values. Thus, n + 1 is also a witness for ⟨∀∞∃∞⟩(x). Hence, c = r−(n + 1, x) is a
witness for ⟨∀∞∃⟩(y).

Now, since a is a witness for ⟨∀∞∃⟩(y), for any b ≥ a there is t such that yb(t) ̸= 0.
By continuity, there is s such that r+(a, x ↾ s) = n and r−(n + 1, x ↾ s) = c.
Moreover, if s is sufficiently large, then for ys = η(x ↾ s), for any b ∈ [a, c] we
already see a value t < s such that ysb(t) ̸= 0. Then, let x′n be the result of
switching all values of xn after s to 0; that is, x′n ↾ s = x ↾ s and x′(u) = 0 for any
u ≥ s. For m ̸= n, keep x′m = xm = 1∞. Now, let us consider y′ = η(x′).

By our construction, n is a not witness for ⟨∀∞∃∞⟩(x′) since x′n contains only
finitely many nonzero values, but n+ 1 is a witness. Our choice of s keeps r−(n+
1, x′) = r−(n + 1, x) = c, which is a witness for ⟨∀∞∃⟩(y′) by the property of r−.
That is, for any b ≥ c, there is t such that y′b(t) ̸= 0. Moreover, by our choice of
s, η(x′) extends ys = η(x ↾ s), so for any b ∈ [a, c], there is t such that y′b(t) ̸= 0.
Put these together, for any b ≥ a, we get y′b ̸= 0∞; hence a is a witness for
⟨∀∞∃⟩(y′). Again, our choice of s keeps r+(a, x′) = r+(a, x) = n, which is a witness
for ⟨∀∞∃∞⟩(x′) by the property of r+. This means that x′n contains infinitely many
nonzero values, which is not true. □

Theorem 4.13. ⟨∀∞∀⟩ ̸≤m ⟨∀∀∞⟩.

Proof. Recall ⟨∀∞∀⟩ ≡m Bdd; hence it suffices to show Bdd ̸≤m ⟨∀∀∞⟩. Assume
⟨∀∞∀⟩ ≤m ⟨∀∀∞⟩ via η, r−, r+. In particular, for any x = (xn)n∈ω and y = η(x),
we have the following:

∃a∀n. xn ≤ a ⇐⇒ ∀n∃s∀t ≥ s. yn(t) = 0.

For each n, begin with xn = 0. Clearly Bdd(x) holds, so ⟨∀∀∞⟩(η(x)) also
holds. Let u = (un)n∈ω be the least witness for y = η(x); that is, un is the
least such that yn(t) = 0 for any t ≥ un. If r−(a + 1, x) = (vn)n∈ω, by the
minimality of u, we have un ≤ vn for any n. By continuity, if ℓ is sufficiently
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large, then r+(u, x ↾ ℓ) = r+(u, x) = a. Let m ≥ ℓ be sufficiently large such that
r−(a+ 1, x ↾ m) extends (vn)n<ℓ and η(x ↾ m) extends {yn(t) : n < ℓ and t ≤ vn};
that is, for ym = η(x ↾ m), the value ymn (t) = yn(t) is determined for any n < ℓ and
t ≤ vn. Then, let x′ be the result of changing some value of xn after m to a + 1;
that is, for some t > m, put x′t = a+ 1 and x′n = 0 for any other n ̸= t.

Then a+1 is still an upper bound for x′, so it is a witness for Bdd(x′), and since
t > m ≥ ℓ, r−(a+1, x′) = (v′n)n∈ω extends (vn)n<ℓ; that is, v

′
n = vn for any n < ℓ.

Recall that yn(t) = 0 for any t ≥ un, in particular, for any [un, vn]. By our choice
of m, y′ = η(x′) extends ym, so y′n(t) = ymn (t) = yn(t) for any n < ℓ and t ≤ vn.
This implies y′n(t) = 0 for any t ∈ [un, vn]. By the property of r−, (v

′
n)n∈ω is a

witness for ⟨∀∀∞⟩(y′), and recall that, (un)n<ℓ is a witness for (yn)n<ℓ = (y′n)n<ℓ.
Thus, the result u′ of replacing the first ℓ values of v′ with (un)n<ℓ is also a witness
for ⟨∀∀∞⟩(y′). By the property of r+, r+(u

′, x′) must be a witness for Bdd(x′).
However, as t > m ≥ ℓ, we have r+(u

′, x′) = r+(u
′, x) = a, which cannot be a

witness for Bdd(x′) since x′(t) = a+ 1. □

Theorem 4.14. ⟨∀∀∞∀⟩ ̸≤m ⟨∃∞∀⟩.

Proof. Recall ⟨∀∀∞∀⟩ ≡m ∀Bdd; hence it suffices to show ∀Bdd ̸≤m ⟨∃∞∀⟩. Assume
∀Bdd ≤m ⟨∃∞∀⟩ via η, r−, r+. In particular, for any x and η(x) = (yk)k∈ω, we have
the following:

∀n∃a∀t. x(n, t) ≤ a ⇐⇒ ∃∞k. yk = 0∞.

A witness for the left-hand side is a function majorizing x̃(n) = supt x(n, t), and
a witness for the right-hand side is an infinite increasing sequence of elements in
Y = {k : yk = 0∞}. For n, t, begin with x(n, t) = 0. For such x, any g ∈ ωω is
a witness for ∀Bdd(x), so r−(g, x) is defined. A value k is a-bounded at n if, for
any g ∈ ωω, whenever r−(g, x)(m) = k for some m, we have g(n) ≤ a, and k is
unbounded at n if k is not a-bounded at n for any a.

Claim. There exists n such that infinitely many values k are unbounded at n.

Proof. Suppose not. Then, for any n, there are at most finitely many k which
are unbounded at n. Let An be the finite set consisting of all such k’s, and put
A≤n =

∪
m≤nAm. Then each Bn = An+1 \ A≤n is finite, and for any z ∈ Bn, we

must have z ̸∈ An, so z is az-bounded at n for some az. Put bn = maxz∈Bn az.
By definition, if g(n) > bn then Bn does not intersect with the image of r−(g, x).
Hence, if g(n) > bn for any n, then the image of r−(g, x) does not intersect with∪

nBn =
∪

n>0An. Such a g exists since each Bn is finite, so fix such a g. As
mentioned above, r−(g, x) is defined, say r−(g, x)(0) = z, so by continuity, for a
sufficiently large n > 0, we have r−(g ↾ n, x)(0) = z. Hence, for any c, we get gc
extending g ↾ n such that gc(n) = c, while keeping r−(gc, x)(0) = z. Considering
an arbitrarily large c, this means that the value z is unbounded at n. Therefore,
by the definition of An, we get z ∈ An. Then the image of r−(g, x) and An have
an intersection, but this is impossible. □

By the property of r−, note that {r−(g, x)(m) : g ∈ ωω and m ∈ ω} ⊆ Y . If k is
unbounded at some n′ then, in particular, k appears in some increasing sequence
r−(g, x) of elements in Y , so we have k ∈ Y . Let n be as in Claim. Then there is
an increasing sequence k̄ = (ki)i∈ω consisting of values which are unbounded at n.
This also gives an increasing sequence of elements in Y ; that is, k̄ is a witness for
⟨∃∞∀⟩(y). Hence, r+(k̄, x) is defined, say r+(k̄, x)(n) = a, so by continuity, for a
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sufficiently large s0, we have r+(k̄ ↾ s0, x ↾ s0)(n) = a. Since ki is not a-bounded
at n, there exists gi such that gi(n) ≥ a + 1 and r−(gi, x)(mi) = ki for some mi.
By continuity, if s1 ≥ s0 is sufficiently large, we have r−(gi ↾ s1, x ↾ s1)(mi) = ki
for each i < s0. Then define x′(n, t) = a+1 for some t ≥ s1, and keep other values
as 0, i.e., x′(m, s) = 0 for any (m, s) ̸= (n, t).

Then consider Y ′ = {k : y′k = 0∞} for y′ = η(x′). By our choice of s1, the com-
putation r−(gi, x

′)(mi) = ki is maintained for each i < s0, Moreover, gi majorizes
x̃′(n) = supt x

′(n, t), which means that gi is still a witness for ∀Bdd(x′), and so
r−(gi, x

′)(mi) = ki ∈ Y ′ by the property of r−. Hence, (ki)i<s0 extends to a witness
k̄′ for ⟨∃∞∀⟩(y′). By the property of r+, r+(k̄

′, x′) must be a witness for ∀Bdd(x′),
which means that it must majorize x̃′. However, by our choice of s0, the computa-
tion r+(k̄

′, x′)(n) = a is maintained, so r+(k̄
′, x′)(n) = a < x′(n, t) ≤ x̃′(n), which

leads to a contradiction. □

Theorem 4.15. ⟨∀∃∀⟩ ̸≤m ⟨∃∞∀∞∀⟩.

Proof. Recall ⟨∃∞∀∞∀⟩ ≡m ∃∞Bdd; hence it suffices to show ⟨∀∃∀⟩ ̸≤m ∃∞Bdd.
Assume ⟨∀∃∀⟩ ≤m ∃∞Bdd via η, r−, r+. In particular, for any x and η(x) = y, we
have the following:

∀n∃a∀t. x(n, a, t) = 0 ⇐⇒ ∃∞k∃b∀t. y(k, t) ≤ b.
A witness for the right-hand side is of the form m 7→ (km, bm), where km ≥ m

and y(km, t) ≤ bm for any t. For each n, a, t, begin with x(n, a, t) = 0. For such
x, any g ∈ ωω is a witness for ⟨∀∃∀⟩(x), so r−(g, x) is defined. A value k is a-
concentrated at n if, for any g ∈ ωω, whenever r−(g, x)(m) = (k, b) for some m, b,
we have g(n) = a, and k is unconcentrated at n if k not a-concentrated at n for any
a.

Claim. There exists n such that infinitely many values k are unconcentrated at n.

Proof. Suppose not. Then, for any n, there are at most finitely many k which are
unconcentrated at n. Let An be the finite set consisting of all such k’s, and put
A≤n =

∪
m≤nAm. Then each Bn = An+1 \ A≤n is finite, and for any z ∈ Bn,

we must have z ̸∈ An, so z is az-concentrated at n for some az. By definition, if
g(n) ̸∈ {az : z ∈ Bn} then Bn does not intersect with the image of π0 ◦ r−(g, x).
Hence, if g(n) ̸∈ {az : z ∈ Bn} for any n, then the image of π0 ◦ r−(g, x) does
not intersect with

∪
nBn =

∪
n>0An. Such a g exists since each Bn is finite, so

fix such a g. As mentioned above, r−(g, x) is defined, say r−(g, x)(0) = (z, b),
so by continuity, for a sufficiently large n > 0, we have r−(g ↾ n, x)(0) = (z, b).
Hence, for any c, we get gc extending g ↾ n such that gc(n) = c, while keeping
r−(gc, x)(0) = (z, b). Considering an arbitrarily large c, this means that the value
z is unconcentrated at n. Therefore, by the definition of An, we get z ∈ An. Then
the image of r−(g, x) and An have an intersection, but this is impossible. □

Let n be as in Claim. Then there is an increasing sequence (ki)i∈ω consisting
of values which are unconcentrated at n. Each ki is not a-concentrated at n, so
there exist g0i , g

1
i ∈ ωω such that g0i (n) ̸= g1i (n), and for each j < 2, we have

r−(g
j
i , x)(m

j
i ) = (ki, b

j
i ) for some mj

i and bji . As mentioned above, any gji is a

witness for ⟨∀∃∀⟩(x), so r−(gji , x)(m
j
i ) is a witness for ∃∞Bdd(y). Then, for ci =

max{b0i , b1i }, one can see that (k̄, c̄) = (ki, ci)i∈ω is also a witness for ∃∞Bdd(y).
Hence, r+((k̄, c̄), x) is defined, say r+((k̄, c̄), x)(n) = a, so by continuity, for a
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sufficiently large s0, we have r+((k̄ ↾ s0, c̄ ↾ s0), x)(n) = a. By continuity, for a

sufficiently large s1 ≥ s0, we have r−(g
j
i , x ↾ s1)(mj

i ) = (ki, b
j
i ) for each i < s0 and

j < 2. Then define x′(n, a, t) ̸= 0 for some t ≥ s1, and keep other values as 0, i.e.,
x′(m, b, s) for any (m, b, s) ̸= (n, a, t).

For each i < s0, since g
0
i (n) ̸= g1i (n), we get gji (n) ̸= a for some j < 2. Fix

such j. Then gji is a witness for ⟨∀∃∀⟩(x′). For y′ = η(x′), by our choice of s1, the

computation r−(g
j
i , x

′)(mj
i ) = (ki, b

j
i ) is maintained for each i < s0. The chosen

gji is still a witness (since gji (n) ̸= a), so (ki, b
j
i )i<s0 is extendible to a witness

for ∃∞Bdd(y′); thus, y′(ki, t) ≤ bji ≤ ci for any i < s0 and t. Hence, (ki, ci)i<s0

is extendible to a witness (k̄′, c̄′) for ∃∞Bdd(y′). By our choice of s0, we have
r+((k̄

′, c̄′), x′)(n) = a and x′(n, a, t) ̸= 0. However, this means that r+((k̄
′, c̄′), x′)

does not give a witness for ⟨∀∃∀⟩(x′), which leads to a contradiction. □

Summarizing the results in Section 4.2, we now see that no more arrows can be
added to Figure 4. For Σ3-patterns, Theorem 4.12 and (the comment after) Proposi-
tion 4.10 show ⟨∀∞∃⟩ <m ⟨∀∞∃∞⟩ <m ⟨∃∀∃⟩. For Π3-patterns, (the comment after)
Proposition 4.11 and Theorem 4.14 show ⟨∀∀∞⟩ and ⟨∃∞∀⟩ are m-incomparable.
Combining with Theorem 4.15, we get ⟨∀∀∞⟩ <m ⟨∀∀∞∀⟩⊥m⟨∃∞∀⟩ <m ⟨∃∞∀∞∀⟩ <m

⟨∀∃∀⟩, which is exactly the same shape as in Figure 4. For dm-reducibility, first
note that, since P̄ ̸≤m Q̄ clearly implies P̄ ̸≤dm Q̄, the previous observations
imply ⟨∃∞∀⟩ ̸≤dm ⟨∀∀∞∀⟩; ⟨∀∀∞⟩ <dm ⟨∀∀∞∀⟩; and ⟨∃∞∀⟩ <dm ⟨∃∞∀∞⟩ <dm

⟨∃∞∀∞∀⟩. By Theorem 4.2, we also have ⟨∃∞∀∞∀⟩ <m ⟨∀∃∀⟩ ≡m ⟨∃∞∃∀⟩, so
⟨∃∞∀∞∀⟩ <dm ⟨∃∞∃∀⟩. Moreover, we have ⟨∀∀∞⟩ ̸≤dm ⟨∃∞∃∀⟩ since by Theorem
4.2, the dual of ⟨∀∀∞⟩ is ∃∀∃-complete, and the dual of ⟨∃∞∃∀⟩ is m-equivalent to
⟨∀∞∃∞⟩ <m ⟨∃∀∃⟩ by Proposition 4.10. Combining the above, we conclude that
Figure 4 is complete.

4.3. Other quantifier-petterns. In Section 3.10, we have dealt with quantifiers
other than ∀,∃, ∀∞, ∃∞. Here, we consider the strength of the quantifier-pattern
∀→∃∀. By taking γ as a trivial formula, we clearly have ⟨∀∃∀⟩ ≤dm ⟨∀→∃∀⟩. The
question is whether these are m-equivalent. For the duals, we can see that it holds
true.

Proposition 4.16. ⟨∃∧∀∃⟩ ≡m ⟨∃∀∃⟩.

Proof. It suffices to show ⟨∃∧∀∃⟩ ≤m ⟨∃∀∃⟩. Given (p, x), we construct y = η(p, x)
such that

∃n (pn = 0∞ and ∀m. xnm ̸= 0∞) ⇐⇒ ∃n∀m. yn(m) ̸= 0∞

Given (x, p), for each n, k,m, we check if pn(k) = 0. If yes, put yn(⟨k,m⟩) = xnm;
otherwise, put yn(⟨k,m⟩) = 0∞.

Let n be a witness for ⟨∃∧∀∃⟩(x, p). Then pn = 0∞ and xnm ̸= 0∞ for any m.
In this case, yn(k,m) = xn(m) ̸= 0∞ for any k,m. Hence, n is also a witness for
⟨∃∀∃⟩(y).

Conversely, let n be a witness for ⟨∃∀∃⟩(y). Then, yn(⟨k,m⟩) ̸= 0∞ for any
k,m. In this case, we must have pn(k) = 0, and thus yn(⟨k,m⟩) = xnm. Therefore,
we get pn = 0∞ and xn(m) = yn(0,m) ̸= 0∞. Hence, n is also a witness for
⟨∃∧∀∃⟩(x, p). □

Theorem 4.17. ⟨∀→∃∀⟩ ̸≤m ⟨∀∃∀⟩.
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Proof. Suppose ⟨∀→∃∀⟩ ≤m ⟨∀∃∀⟩ via η, r−, r+. In particular, for any (p, x) and
y = η(p, x), we have the following:

∀n (pn = 0∞ → ∃m. xnm = 0∞) ⇐⇒ ∀n∃m. yn(m) = 0∞.

Begin with xnm = 0∞ and pn = 0∞. Clearly, n 7→ c0(n) = 0 is a witness for
⟨∀→∃∀⟩(p, x). Then, one can see r := r+(r−(c0, (p, x)), (p, x)) = c0. Otherwise,
r(n) ̸= 0 for some n, which is determined after reading a finite initial segment
(p, x) ↾ ℓ of (p, x) by continuity. By changing only the value xnr(n)(t) for t > ℓ, we

get some x̃ such that x̃nr(n) ̸= 0∞ while keeping x̃ ↾ ℓ = x ↾ ℓ. As r(n) ̸= 0, c0 is still

a witness for ⟨∀→∃∀⟩(p, x̃). Therefore, r̃ = r−(c0, (p, x̃)) is a witness for ⟨∀∃∀⟩(ỹ),
where ỹ = η(p, x̃). In particular, x̃nr̃(n) = 0∞. However, since x̃ ↾ ℓ = x ↾ ℓ, we must

have r̃(n) = r(n), and thus 0∞ = x̃nr̃(n) = x̃nr(n) ̸= 0∞, which is impossible.

Now, r(0) is determined after reading some finite initial segment (p, x) ↾ ℓ by
continuity. Again, by changing only the value x0r(0)(t) for t > ℓ, we get some x̃ such

that x̃0r(0) ̸= 0∞ while keeping x̃ ↾ ℓ = x ↾ ℓ. Here, we also keep x̃n(m) = 0∞ for

any (n,m) ̸= (0, 0).
Then ⟨∀→∃∀⟩(p, x̃) still holds; thus, ⟨∀∃∀⟩(ỹ) also holds, where ỹ = η(p, x̃). If q =

r−(c0, (p, x) ↾ ℓ) ↾ ℓ is extendible to a witness for ⟨∀∃∀⟩(ỹ), then r̃ = r+(q, (p, x)) is
also extendible to a witness for ⟨∀→∃∀⟩(p, x̃); that is, x̃nr̃(n) = 0∞; however, we have

r̃(0) = r(0) and x̃0r(0) ̸= 0∞. Hence, q is not extendible to a witness for ⟨∀∃∀⟩(ỹ),
which means that there is n < ℓ such that ỹn(q(n)) ̸= 0∞, so ỹn(q(n))(u) ̸= 0 for
some u. By continuity, this value ỹn(q(n))(u) ̸= 0 is determined after reading some
(p, x̃) ↾ ℓ′ for some ℓ′ > ℓ.

Then, by changing only the value p0(t) for t > ℓ′, we get some p̃ such that
p̃0 ̸= 0∞ while keeping p̃ ↾ ℓ′ = p ↾ ℓ′. Then, c0 is a witness for ⟨∀→∃∀⟩(p̃, x̃); hence
q̃ = r−(c0, (p̃, x̃)) must be a witness for ⟨∀∃∀⟩(y′), where y′ = η(p̃, x̃). Moreover, q̃
extends q, so in particular, q̃(n) = q(n) for any n < ℓ, and by our choice of ℓ′, we
must have y′n(q̃(n))(u) = ỹn(q(n))(u) ̸= 0. However, this means y′n(q̃(n)) ̸= 0∞, so
q̃ is not a witness for ⟨∀∃∀⟩(y′). This leads to a contradiction. □

Corollary 4.18. ⟨∀∃∀⟩ <dm Perfectbin.

Proof. By Theorems 3.30 and 4.17. □

4.4. Specific problems. Next, we perform a detailed analysis of the complexity
of the infinite-diameter problem InfDiam = FinDiamd introduced in Section 3.8.
By combining Propositions 3.22 and 3.24 and Theorem 4.2, we have obtained that
FinDiam ≡m ⟨∀∞∀∃⟩ ≡m ⟨∀∞∃∞⟩ and ⟨∀∀∞∀⟩ ≤m InfDiam ≤dm ⟨∃∞∃∀⟩. Judging
from Figure 4, this problem seems to be of intermediate complexity.

Moreover, InfDiam is not amalgamable since we have DisConn ≤m InfDiam by
Proposition 3.25, and the disconnectedness problem DisConn is not amalgamable
[13].

Lemma 4.19 ([13]). If φ is amalgamable, then DisConn ̸≤m φ.

In particular, InfDiam ̸≤m φ for any amalgamable φ. Nevertheless, interestingly,
⟨∨∀⟩ is not m-reducible to InfDiam.

Theorem 4.20. ⟨∨∀⟩ ̸≤m InfDiam.
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Proof. Suppose ⟨∨∀⟩ ≤m InfDiam via η, r−, r+. Begin with xi = 0∞. Then for each
i < 2, r−(i, x) = (ain, b

i
n)n∈ω is a witness for InfDiam(η(x)); that is, the distance

between (ain, b
i
n) is at least n. For each n, let En be the set of all two-element subsets

of Vn = {a03n, b03n, a13n, b13n}. Counting the number of combinations of selecting two
vertices from the set Vn of at most four vertices, we see that the cardinality of En

is at most 6.
Now, for any f ∈

∏
nEn, if f is a witness for InfDiam(η(x)), then r+(f, x) gives

a witness for ⟨∨∀⟩(x); that is, xi = 0∞ if r+(f, x) = i. In particular, either f is
not a witness for InfDiam(η(x)) or r+(f, x) gives a witness for ⟨∨∀⟩(x). Moreover,
which of these holds is determined after reading some finite information of f and
x. If the latter holds, this is clear. If the former holds, there is n such that the
distance between f(n) = {a, b} is less than n; that is, in the graph η(x), there
is a path of length less than n connecting a and b. After reading some finite
information of x, it is determined that such a path exists in the graph η(x). Hence,
by compactness of

∏
nEn, there is ℓ such that either the graph η(x ↾ ℓ) has a path

of length less than n connecting two vertices in f(n) for some n < ℓ or the value
of r+(f ↾ ℓ, x ↾ ℓ) ∈ {0, 1} is determined. Then let ℓ′ ≥ ℓ be such that r−(i, x ↾ ℓ′)
extends (ain, b

i
n)n<3ℓ for each i < 2.

Now, consider T =
∏

n<ℓEn, and let us think of this as a tree of height ℓ. For
each leaf ρ ∈ T , we define the acting position α(ρ) of ρ as follows: If the graph
η(x ↾ ℓ) has a path of length less than n connecting two vertices in ρ(n) for some
n < ℓ, then put α(ρ) = ρ ↾ (n+ 1). Otherwise, r+(ρ, x ↾ ℓ) is defined by our choice
of ℓ, so first, let us label ρ with this value. Note that if we put x′i(t) ̸= 0 for a
sufficiently large t ≥ ℓ′ (so x′i ̸= 0∞), then for any i-labeled leaf ρ there is n < ℓ
such that the distance of vertices in ρ(n) must be less than n in the graph η(x′).
Otherwise, ρ is extendible to a witness f for InfDiam(η(x′)), so r+(f, x

′) must be
a witness for ⟨∨∀⟩(x′); however, we have r+(f, x

′) = i since ρ is labeled by i, and
x′i ̸= 0∞, which means that r+(f, x

′) is not a correct witness for ⟨∨∀⟩(x′). Hence,
we must have n such that the distance between two vertices in ρ(n) is less than n
in η(x′), so for such an n, we put α(ρ) = ρ ↾ (n+ 1).

We say that σ ∈ T is a full-acting node if each of the immediate successor of σ
in T is the acting position of some leaf. In other words, for the length k of σ, for
each a ∈ Ek there is a leaf ρ ∈ T such that α(ρ) = σ⌢a.

Claim. There always exists a full-acting node in T .

Proof. Suppose that a full-acting node does not exist in T . In particular, the root is
not a full-acting node, so by definition, the root has an immediate successor a1 ∈ T
which is not an acting position of any leaf. By our assumption, a1 is also not a
full-acting node, so a1 has an immediate successor ⟨a1, a2⟩ ∈ T which is not an
acting position of any leaf. Repeat this process to obtain a leaf ρ = ⟨a1, a2, . . . aℓ⟩.
Here, ρ ↾ j is not an acting position for any j ≥ 1, so the acting position α(ρ) of
ρ must be the root. However, the acting position of the leaf is always a node of
length at least 1, so this is impossible. □

Now fix a full-acting node σ ∈ T , and let n be its length. Then, for each a ∈ En,
there is a leaf ρa extending σ⌢a whose acting position is σ⌢a. Now, the value of the
label of a ∈ En is set to the value of the label of ρa, i.e., the value of r+(ρa, x

′ ↾ ℓ).
Here, if the label of ρa is undefined, choose any value of 0 or 1. In other words,
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either there is a path of length less than n connecting the two vertices in a, or else
a is labeled by the value of r+(ρa, x

′ ↾ ℓ).
Claim. z = {ai3n, bi3n} is labeled by i.

Proof. Suppose not. Since this z is the (3n)th component of r−(i, x); that is, the
(3n)th component of a witness for InfDiam(η(x)), the distance between {ai3n, bi3n}
is at least 3n. Therefore, the label of z must be defined, and its value is 1 − i by
our assumption. Since ρz is labeled by 1− i, the action position being α(ρz) = σ⌢z
means that the distance between two vertices in z must become less than n in η(x′)
after putting x′1−i(t) ̸= 0. In this case, x′i = 0∞ is maintained, so i is a witness

for ⟨∨∀⟩(x′). Now, since t ≥ ℓ′, r−(i, x
′) extends (ain, b

i
n)n<3ℓ, so in particular

the distance between z = {ai3n, bi3n} must be at least 3n even in η(x′). This is
impossible. □

The rest can be done by imitating the proof of ⟨∨∀⟩ ̸≤m DisConn in [13], but the
notation is slightly different, so we give a complete proof here. Each edge of the
complete graph Gn = (Vn, En) with at most 4 vertices Vn = {a03n, b03n, a13n, b13n} is
labeled in the above way.

Claim. For some i < 2, there exists a path γ of length at most 3 connecting ai3n
and bi3n in Gn such that γ consists only of edges with label 1− i.

Proof. Suppose not for i = 0 (the same argument applies to the case where i = 1).
For the sake of clarity, edges of a graph are described using the symbol → below,
but note that we consider an undirected graph, so a → b and b → a represent the
same edge, and the labels are also the same.

First, the vertices a03n and b03n are connected by the path a03n → a13n → b13n → b03n
of length 3 in the complete graph Gn. By our assumption, one of these edges is
labeled by 0. By the previous claim, the edge a13n → b13n is labeled by 1, so either
a03n → a13n or b13n → b03n must be labeled by 0.

Case 1. Assume that the edge a03n → a13n is labeled by 0. The vertices a03n and
b03n are connected by the path a03n → b13n → b03n of length 2. By our assumption,
either a03n → b13n or b13n → b03n is labeled by 0. In the former case, the path
a13n → a03n → b13n of length 2 connects a13n and b13n and consists only of 0-labeled
edges. In the latter case, by the above claim, the edge a03n → b03n is labeled by 0,
so the path a13n → a03n → b03n → b13n of length 3 connects a13n and b13n and consists
only of 0-labeled edges.

Case 2. Assume that the edge b13n → b03n is labeled by 0. The vertices a03n and
b03n are connected by the path a03n → a13n → b03n of length 2. By our assumption,
either a03n → a13n or a13n → b03n is labeled by 0. In the latter case, the path
a13n → b03n → b13n of length 2 connects a13n and b13n consists only of 0-labeled edges.
In the former case, by the above claim, the edge a03n → b03n is labeled by 0, so the
path a13n → a03n → b03n → b13n of length 3 connects a13n and b13n and consists only of
0-labeled edges. □

Fix i < 2 as in the previous claim. Then put x′1−i(t) ̸= 0 for a sufficiently large

t. For each a ∈ En, since the acting position of the leaf ρa ∈ T is σ⌢a, if a is
labeled by 1− i, then by the definition of the acting position, the distance between
two vertices in ρa(n) = a is less than n in the graph γ(x′). This means that the
end points of each (1 − i)-labeled edge in the complete graph Gn = (Vn, En) are
connected by a path of length less than n in the graph γ(x′). By the previous
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claim, ai3n and bi3n are connected by a (1 − i)-labeled path of length at most 3 in
Gn, so they are connected by a path of length less than 3n in γ(x′). However, i is
still a witness for ⟨∨∀⟩(x′), so r−(i, x′) must be a witness for InfDiam(η(x′)), which
extends (ain, b

i
n)n<3ℓ. In particular, the distance between (ai3n, b

i
3n) must be at least

3n in γ(x′), which leads to a contradiction. □

Corollary 4.21. ⟨∀∀∞∀⟩ <m InfDiam <m ⟨∀∃∀⟩, and InfDiam <dm ⟨∃∞∃∀⟩.

Proof. Clearly, ⟨∨∀⟩ ≤m ⟨∀∃∀⟩, so Theorem 4.20 implies InfDiam <m ⟨∀∃∀⟩. The
proof of Proposition 4.11 shows that ⟨∀∀∞∀⟩ is amalgamable, so Lemma 4.19 im-
plies DisConn ̸≤m ⟨∀∀∞∀⟩. Theorefore, by Proposition 3.24 and 3.25, we obtain
⟨∀∀∞∀⟩ <m InfDiam. For the second assertion, the proof of Proposition 3.22 shows
InfDiam ≤dm ⟨∃∞∃∀⟩. Moreover, we clearly have ⟨∨∀⟩ ≤dm ⟨∃∞∃∀⟩, so by Theorem
4.20, we get InfDiam <dm ⟨∃∞∃∀⟩. □

As a modification of the infinite-diameter problem, if we consider the problem of
determining whether the diameter is at least r for a fixed r ≥ 4, then the modified
problem turns out to be ∃∀-complete.

Diam≥r : ∃u, v ∈ V ∀γ [(γ connects u and v)→ |γ| ≥ r].

Proposition 4.22. Diam≥4 is ∃∀-complete.

Proof. Given x = (xn)n∈ω, we construct η(x) = (V,E) such that

∃n. xn = 0∞ ⇐⇒ the diameter of (V,E) is at least 4.

The graph has a path an0 → an1 → an2 → an3 → an4 of length 4 for each n ∈ ω.
Moreover, put (ani , a

m
i ) ∈ E for any n ̸= m. If xn(t) ̸= 0 for some t, then add

cnt ∈ V for such t and put (ani , c
n
t ) ∈ E for each i < 5.

The distance between cnt and amj is at most 2 since there is a path cnt → anj → amj
of length 2. Hence, if there is a vertex of the form cnt , then since ani and cnt are
adjacent, the distance between ani and amj is at most 3. If there is no vertex of the
form cnt , the distance between an0 and an4 is 4. This is because, if there is a path
of length at most 3 connecting an0 and an4 , then it is necessary to pass through a
vertex of the form amj for some m ̸= n. If |i− j| ≥ 2, the shortest path between ani
and anj that passes through such a vertex is ani → ami → cmt → amj → anj , whose
length is 4 (even if cmt exists). To summarize this, a vertex of the form cnt exists iff,
for any m, i, j, the distance between (ani , a

m
j ) is at most 3.

Now, if n is a witness for ⟨∃∀⟩(x), then there is no vertex of the form cnt . Then
the distance between (an0 , a

n
4 ) is at least 4 as discussed above, so (an0 , a

n
4 ) is a witness

for Diam≥4(V,E). Conversely, if (u, v) is a witness for Diam≥4(V,E); that is, the
distance between (u, v) is at least 4, then by the above argument, neither u nor v
can be of the form cnt . Hence, u = ani and v = amj for some n,m, i, j. Then, there
is no vertex of the form cnt as discussed above. This means that xn(t) = 0 for any
t. Hence, n is a witness for ⟨∃∀⟩(x). □

Corollary 4.23. Diam≥4 ̸≤m InfDiam.

Proof. By Theorem 4.20 we have ⟨∨∀⟩ ̸≤m InfDiam, and by Proposition 4.22, we
also have ⟨∨∀⟩ ≤m ⟨∃∀⟩ ≤m Diam≥4. Combining these, we obtain Diam≥4 ̸≤m

InfDiam. □



42 TAKAYUKI KIHARA

5. Open Question

The most straightforward but important open problem is the problem of counting
the number of equivalence classes of quantifier patterns at each level n ≥ 4 of the
arithmetical hierarchy.

Question 1. How many ≡m-equivalence classes of Σ4 quantifier-patterns are there?
How many ≡m-equivalence classes of Π4 quantifier-patterns are there? How many
≡dm-equivalence classes of Σ4 quantifier-patterns are there?

Of course, this problem can also be considered for general n other than n = 4.
It would also be useful to have a general method of determining the relationship
between two given quantifier-patterns. This problem is expected to be difficult, but
it is important.

Question 2. Find an algorithm which decides if ⟨P̄⟩ ≤m ⟨Q̄⟩ for given quantifier-
patterns P̄ and Q̄.

It is also important to reconsider previous research on the classical arithmetical
hierarchy from the realizability-theoretic perspective. For example, it is important
to consider the problem of determining the exact arithmetical complexity (the exact
quantifier-patterns) of natural decision problems involving groups [5]; see also [21]
for witness/search problems in group theory.
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