
THE SUBTURING DEGREES

TAKAYUKI KIHARA AND KENG MENG NG

Abstract. In this article, we introduce a notion of reducibility for partial
functions on the natural numbers, which we call subTuring reducibility. One

important aspect is that the subTuring degrees correspond to the structure of
the realizability subtoposes of the effective topos. We show that the subTuring
degrees (that is, the realizability subtoposes of the effective topos) form a

dense non-modular (thus, non-distributive) lattice. We also show that there
is a nonzero join-irreducible subTuring degree (which implies that there is a
realizability subtopos of the effective topos that cannot be decomposed into
two smaller realizability subtoposes).

1. Introduction

1.1. Background. The analysis of the degrees of non-computability is a central
subject in computability theory. The key notion used to compare degrees of non-
computability of total functions on the natural numbers is Turing reducibility. The
best known reducibility for partial functions is Kleene’s relative partial computabil-
ity or nondeterministic Turing reducibility [3, Chapter 11], which coincides with
enumeration reducibility for the graphs of partial functions. Therefore, it has been
widely believed that the study of degrees of partial functions can be absorbed into
the theory of enumeration degrees. However, unlike the case of total functions,
other candidates for the notion of reducibility for partial functions have been pro-
posed. Sasso [11] used a type of relative computation with sequential (non-parallel)
access to an oracle to introduce a reducibility notion between partial functions.
This degree structure, which Sasso called the T -degrees of partial functions, has
been little studied since then in degree theory, but the importance of Sasso’s de-
gree structure has been highlighted in a context quite different from that of degree
theory.

In constructive mathematics, the pioneering work was done by Goodman [5],
who used a model of relative computation similar to Sasso’s to show the so-called
Goodman’s theorem: The system HAω of finite type Heyting arithmetic plus the
axiom of choice AC is conservative over Heyting arithmetic HA. The proof uses
the realizability interpretation relative to a generic partial choice function; see also
[2, 12]. The notion of computability relative to a partial function used here is
precisely the notion of subTuring reducibility (Definition 1.1), which is a slight
modification of Sasso’s definition (first formally introduced by Madore [9] and later
by Kihara [6]).

The exact same reducibility has also been used in van Oosten’s semantical proof
of de Jongh’s theorem [13], for example: For a formula A in intuitionistic predicate
calculus IQC, IQC proves A iff HA proves every arithmetical substitution instance

Date: November 13, 2024.

1

2 TAKAYUKI KIHARA AND KENG MENG NG

of A. The proof of backward direction is done by replacing predicate symbols
with mutually generic arithmetical formulas. The tool used here is a pca-valued
sheaf (pca stands for partial combinatory algebra). Each pca used in the proof is
of the form K1[f], where K1[f] represents a model of computability relative to a
partial function f . To be more precise, K1 stands for Kleene’s first algebra; that
is, the standard model of computability on the natural numbers, and the relative
computability is precisely subTuring reducibility.

Later, van Oosten [14] used the same relative computability, which he called a
dialogue, to introduce the type structure of finite type functionals based on par-
tial functions. Given a partial combinatory algebra A, the dialogue for a partial
function f yields a new algebra A[f]; see e.g. [15]. As one of the notable results,
Faber-van Oosten [4, Corollary 2.11] showed that a realizability subtopos (that is,
a realizability topos which is a subtopos) of the effective topos Eff is nothing but
the realizability topos over K1[f] for some partial function f . This shows that
the structure of the subTuring degrees of partial functions on the natural numbers
corresponds exactly to the structure of the realizability subtoposes of the effective
topos Eff .

In short, a modification of Sasso’s model of sequential computation, i.e., sub-
Turing reducibility, was essential in various works on constructive mathematics,
realizability topos theory, etc. For these reasons, Kihara [6] has isolated this notion
of subTuring reducibility, and raised the analysis of its structure as an important
problem. The issue of structural analysis of subTuring degrees has also been raised
by Madore [9].

This article addresses the problem [9, 6] of analyzing the structure of the sub-
Turing degrees (in other words, the structure of the realizability subtoposes of Eff).
In this article, we only aim to perform a pure degree-theoretic analysis, but in the
subsequent article [8], we will apply the powerful techniques we have developed in
this article to various model constructions in constructive mathematics.

Let us summarize some of the results we present in this article. We show that
the subTuring degrees (that is, the realizability subtoposes of the effective topos)
form a dense, non-distributive, non-modular lattice. We also show that there is
a nonzero join-irreducible subTuring degree (which implies that there is a realiz-
ability subtopos of the effective topos that cannot be decomposed into two smaller
realizability subtoposes).

1.2. Preliminaries. For the basics of computability theory, see [3, 10].

1.3. Definition. In Sasso’s model of relative computation, access to an oracle is
always sequential, so parallel access is not allowed. In other words, if we make a
query to an oracle during a computation, we must wait until the oracle replies.
However, if the oracle is a partial function, it is possible that the oracle will not
return forever, in which case the computation will be stuck. Therefore, a query we
make must always be a value in the domain of the oracle if we want the computation
to halt.

Let us formulate this Sasso’s idea rigorously. For a partial computable function
Φ:⊆ ω<ω → 2×ω, the g-relative sequential computation Φ[g] is defined as follows:

(1) Assume that n is given as input, the oracle’s responses (a0, . . . , as−1) are
given by the sth round, and the computation has not yet halted.

THE SUBTURING DEGREES 3

(2) If Φ(n, a0, . . . , as−1) does not halt, then neither does Φ[g](n) (written Φ[g](n) ↑).
Otherwise, we have Φ(n, a0, . . . , as−1) ↓= ⟨is, qs⟩.
(a) If is = 1, the computation halts and qs is the output of this computa-

tion.
(b) If is = 0, proceed to the next step (3).

(3) If qs ∈ dom(g), the computation continues with as = g(qs). If qs ̸∈ dom(g),
the computation never halts.

If the computation arrives at (2a) above, we write Φ[g](n) ↓= qs. If the compu-
tation goes to (2b), we call qs a query. Note that this sequential computation has
the following monotonicity: f ⊆ g implies Φ[f] ⊆ Φ[g].

Definition 1.1. For partial functions f, g :⊆ ω → ω, we say that f is subTuring
reducible to g (written f ≤subT g) if there exists a partial computable function Φ
such that f ⊆ Φ[g]; that is, for any n ∈ dom(f) we have Φ[g](n) ↓= f(n).

Roughly speaking, f ≤subT g if there exists a Turing functional Φ which com-
putes Φg(n) ↓ = f(n) without making a query outside of dom(g), whenever an
input n is given from dom(f). Hereafter, Φ[g] is sometimes written as Φg.

Remark. Sasso’s Turing reducibility f ≤T g is defined as f = Φ[g]; that is, it
requires the condition dom(f) = dom(Φ[g]). Thus, f ≤subT g if and only if f has

an extension f̂ with f̂ ≤T g. Definition 1.1 is first proposed by Madore [9].

In particular, if we consider only total functions, it agrees exactly with the usual
Turing reducibility.

Observation 1.2. If g is total, then g ≤T f if and only if g ≤subT f .

1.4. Basics. Restricting to binary functions does not change the structure.

Observation 1.3. Any partial function f :⊆ ω → ω is subTuring equivalent to a
partial binary function Gf :⊆ ω → 2.

Proof. Let Gf be the graph of f in the following sense:

Gf (n,m) =

1 if f(n) ↓ = m

0 if f(n) ↓ ̸= m

↑ if f(n) ↑

For Gf ≤subT f , to compute Gf (n,m), just ask for the value of f(n), where
(n,m) ∈ dom(Gf) implies n ∈ dom(f). For f ≤subT Gf , to compute f(n), ask for
the values of Gf (n, 0), Gf (n, 1), Gf (n, 2), . . . , where n ∈ dom(f) implies (n,m) ∈
dom(Gf) for any m. If n ∈ dom(f) then the answer G(n, k) = 1 will be returned
at some point, so we can output k at that time. □

A subTuring degree is total if it contains a total function.

Observation 1.4. If the domain of f :⊆ ω → ω is c.e., then f has a total subTuring
degree. Similarly, if the domain of f : ⊆ ω → ω is computable relative to f , i.e.,
χdom(f) ≤subT f , then f has a total subTuring degree.

First, the minimum requirement for a reducibility notion is that it be preordered.

Observation 1.5. ≤subT is transitive.

4 TAKAYUKI KIHARA AND KENG MENG NG

Proof. Assume that f ≤subT g ≤subT h. Then we get f ⊆ Φ[g] and g ⊆ Ψ[h].
By monotonicity, we get f ⊆ Φ[g] ⊆ Φ[Ψ[h]]. By composing the two sequential
computations, we get f ≤subT h. □

Observation 1.6. The least subTuring degree contains of exactly those functions
with a partial computable extension.

1.5. Realizability theory. To emphasize the importance of subTuring degrees,
as mentioned in Section 1.1, this is not only related to pure computability theory,
but also to realizability theory [16]. The purpose of Section 1.5 is to explain this
connection, and since it will not be used in the remaining sections, readers who are
only interested in pure computability theory may skip this section.

Definition 1.7. A partial combinatory algebra (pca) is a set equipped with a partial
binary operation which is combinatory complete; see [16]. For a partial function
f :⊆ ω → ω, we consider the pca K1[f] = (ω, ∗f) of f -relative computability; that
is, the partial binary operation ∗f :⊆ ω2 → ω is defined as follows:

e ∗f n ↓ = m ⇐⇒ Φe[f](n) ↓ = m,

where Φe is the eth partial computable function.

Let RT(A) be the realizability topos induced by a pca A.

Fact 1 ([4, Corollary 2.11]). Every realizability subtopos of the effective topos is
equivalent to one of the form RT(K1[f]) for some partial function f on the natural
numbers.

Moreover, there is an inclusion of toposes RT(K1[f]) ↪→ RT(K1[g]) if and only
if g ≤subT f .

Assuming the former assertion, the latter assertion can also be derived from the
correspondence between the subTuring degrees and some suborder of the poset of
Lawvere-Tierney topologies; see also [7, 6]. The important point is that this is
based on subTuring reducibility, and not on nondeterministic Turing reducibility
(enumeration reducibility). In this way, the theory of subTuring degrees can be
seen as a classification theory of the realizability subtoposes of the effective topos,
or a classification theory of K1-based pcas.

2. Basic operations on subTuring degrees

2.1. Lattice structure. Let us examine the basic structure of the subTuring de-
grees. Most degree structures studied in computability theory are upper semilat-
tice, but they often do not have a meet (consider the Turing degrees, the many-one
degrees, the truth-table degrees, the enumeration degrees, and so on).

Degree structures with meet are also known, but they are degree structures for
problems with many solutions (e.g., the Medvedev degrees, the Muchnik degrees,
and the Weihrauch degrees), and in the context of this article, they correspond
to degree structures for multi-valued functions. Surprisingly, the subTuring degree
structure has a meet even though it deals with single-valued functions.

Proposition 2.1. The subTuring degrees form a lattice.

Proof. The join f ⊕ g is defined as usual:

(f ⊕ g)(2n) = f(n); (f ⊕ g)(2n+ 1) = g(n).

THE SUBTURING DEGREES 5

The meet f ∩ g is defined as follows:

(f ∩ g)(d, e, n) =

{
Φd[f](n) if Φd[f](n) ↓ = Φe[g](n) ↓
↑ otherwise.

For f ∩ g ≤subT f , to compute (f ∩ g)(d, e, n), simulate Φd[f](n). If (d, e, n) ∈
dom(f ∩ g) then Φd[f](n) ↓ by definition, so any queries made during the compu-
tation are contained within the domain of f . The same applies to f ∩ g ≤subT g.

To show that f ∩ g is the greatest lower bound of f and g, assume h ≤subT f, g.
Then there exist d and e such that h ⊆ Φd[f],Φe[g]. This means that n ∈ dom(h)
implies Φd[f](n) ↓ = Φe[g](n) ↓ = h(n), so we have (d, e, n) ∈ dom(f ∩ g) and
(f ∩ g)(d, e, n) = h(n). This shows h ≤subT f ∩ g. □

Thus, the subTuring degrees have the property of being a lattice, which is very
rare in degree theory. A few other degree structures that are lattices, such as
Medvedev and Weihrauch degrees, are known to be distributive lattices. Is the
subTuring lattice also distributive? Quite interestingly, the subTuring lattice is
non-distributive! The result that it is a lattice, and that it is not distributive
despite being a lattice, implies that it is not elementarily equivalent to other known
degree structures. The proof is a bit technical, so it is better to get used to the
basic proof techniques first, so we leave the proof for later (Theorem 3.9).

2.2. Completeness. Next, let us discuss countable joins and meets. There is no
nontrivial countable supremum in several degree structures, including the Turing
degrees. Spector’s proof uses the notion of an exact pair, which leads to the ab-
sence of a meet, but is not applicable to the subTuring degrees by Proposition 2.1.
Nevertheless, it is easy to prove the absence of nontrivial countable supremum in
the subTuring degrees using a similar method.

Proposition 2.2. No strictly increasing ω-sequence of subTuring degrees has a
supremum.

Proof. Assume that we are given a countable sequence (gn)n∈ω of partial functions
of increasing subTuring degrees. Let us check that given any upper bound h of
(gn)n∈ω, we can construct another upper bound f such that h ̸≤subT f . For this
purpose, we construct a strictly increasing sequence (an)n∈ω and guarantee that
f(an, x) = gn(x). Also, let f(b, x) be undefined if b ̸= an for any n ∈ ω. In this
case, it is clear that gn ≤subT f for any n ∈ ω, so we want to guarantee h ̸≤subT f
by choosing an appropriately.

We describe a strategy to ensure h ̸≤subT f via e, i.e., h ̸⊆ Φe[f]. Assume that
(an)n≤e has already been constructed and that f(b, x) is determined for any b ≤ ae.
At stage e, perform the following actions: Ask if the computation of Φe[f](n) for
some input n ∈ dom(h) makes a query (b, x) for some b > ae and x ∈ ω.

Case (1): If yes, declare f(b, x) ↑. In other words, put ae+1 = b+1 and proceed to
the next stage e+1. In this case, the computation of Φe[f](n) for some n ∈ dom(h)
makes a query to (b, x) ̸∈ dom(f), which implies Φe[f](n) ↑. In particular, we have
h ̸⊆ Φe[f].

Case (2): If no, then do nothing and proceed to the next stage e + 1. In this
case, only queries whose first coordinates are at most ae are asked to f during
the computation of Φe[f](n) for any n ∈ dom(h). By our definition of f , using
g0 ⊕ · · · ⊕ ge one can easily compute f(b, x) for any b ≤ ae and x ∈ ω. In other

6 TAKAYUKI KIHARA AND KENG MENG NG

words, f ↾ (ae + 1) × ω ≤subT g0 ⊕ · · · ⊕ ge ≤subT ge. By assumption, we have
h ̸≤subT ge, so h ̸≤subT f ↾ (ae + 1) × ω. However, the computation of Φe[f] is
performed by accessing only to f ↾ (ae + 1) × ω, so computing h must have failed
somewhere. Hence, we get h ̸⊆ Φe[f]. □

By a somewhat dual argument, the absence of nontrivial countable infimum can
also be easily proved.

Proposition 2.3. No strictly decreasing ω-sequence of subTuring degrees has an
infimum.

Proof. Assume that we are given a countable sequence (gn)n∈ω of partial functions
of decreasing subTuring degrees. Let us check that given any lower bound h of
(gn)n∈ω, we can construct another lower bound f ̸≤subT h. Now, instead of gn,
consider g∗n = g0 ∩ · · · ∩ gn. For simplicity, we can assume that an input of g∗n
is of the form (e0, . . . , en, x). That is, g∗n(e0, . . . , en, x) is the common value of
Φe0 [g0](x), . . . ,Φen [gn](x) if it is defined. In particular, we have dom(g∗n) ⊆ ωn+2, so
we can assume that the domains of g∗n’s are pairwise disjoint. We construct a strictly
increasing sequence (an)n∈ω such that an ∈ dom(g∗n) and define f(an) = g∗n(an).
Also, let f(b) be undefined if b ̸= an for any n ∈ ω.

First, let us check f ≤subT g
∗
n no matter how we choose (an)n∈ω. For eachm ≥ n,

if am is of the form ⟨e0, . . . , em, x⟩ and f(am) ↓, then the value of f(am) is the com-
mon value of Φe0 [g0](x), . . . ,Φem [gm](x), which is especially the common value of
Φe0 [g0](x), . . . ,Φen [gn](x). Therefore, it follows that f(am) = g∗m(e0, . . . , em, x) =
g∗n(e0, . . . , en, x). In this way, using g∗n one can compute f except for finitely many
values, so we obtain f ≤subT g

∗
n. Now we want to guarantee f ̸≤subT h by choosing

an appropriately.
We describe a strategy to ensure f ̸≤subT h via e, i.e., f ̸⊆ Φe[h]. Assume that

(an)n<e has already been constructed. At stage e, perform the following actions:
Find ae ∈ dom(ge) such that ae > ae−1 and Φe[h](ae) ̸= g∗e(ae). Since g∗e ̸≤subT h
by assumption, such ae must exist. Then proceed to the next stage e+1. Note that
ae ∈ dom(ge) implies ae ∈ dom(f) by definition. Therefore, our strategy ensures
Φe[h](ae) ̸= f(ae), which implies f ̸⊆ Φe[h]. □

2.3. Jump Operator. For Turing degrees, there is an important operator called
the Turing jump, which is defined as the relative halting problem. There is also
the enumeration jump operator for the enumeration degrees, which is an extension
of the Turing jump operator. It is hoped, then, that the notion of jump for the
subTuring degrees can also be introduced. It is natural to require, for example, the
following for the subTuring jump operator J .

(1) Inflationary: f ≤subT J(f)
(2) Monotone: f ≤subT g =⇒ J(f) ≤subT J(g)
(3) Conservative: f total =⇒ J(f) ≡subT f

′

(4) Strict: J(f) ̸≤subT f

Here, f ′ denotes the Turing jump of f . However, currently, no operator J has
been found that satisfies all of these properties. For example, the most obvious
candidate for J is probably the relative halting problem, as usual.

K0(f)(e) =

{
1 if Φe[f](e) ↓
0 if Φe[f](e) ↑

THE SUBTURING DEGREES 7

However, this is not appropriate for a jump operator in the following sense:

Observation 2.4. K0 is not monotone.

Proof. Observe χdom(f) ≤subT K0(f). This is because if Φd(n) is a computation
that asks the query n and halts regardless of the solution, then being n ∈ dom(f)

and Φf
d(n)(d(n)) halting are equivalent, which is equivalent to d(n) ∈ K0(f)(d(n)).

If f is a total function, then f ↾ A ≤subT f for any A. Let us take A such that
χA ̸≤subT K0(f). IfK0 is monotone, then we get χA ≤subT K0(f ↾ A) ≤subT K0(f),
which is a contradiction. □

However, we cannot give up the monotonicity necessary to guarantee that the
jump operator is well-defined on the subTuring degrees. Considering what went
wrong, we just defined K0(f) as the relative halting problem, but we must not
forget that in our relative computation, there are two kinds of reasons for “not
halting”. That is, one is simply that a machine (a Turing functional Φ) does not
halt, and the other is that the query was made outside the domain of an oracle and
we are waiting forever for the oracle’s response. Thus, it is reasonable to define the
relative halting problem as follows:

K(f)(e) =

1 if Φe[f](e) ↓
0 if Φe[f](e) ↑ without making a query outside of dom(f),

↑ if Φe[f](e) ↑ because of making a query outside of dom(f).

This is similar to the way in which a feedback Turing machine [1] distinguishes
between non-halting and freezing computations, but we have not yet figured out
the formal correspondence. This relative halting problem K has the expected prop-
erties.

Proposition 2.5. K satisfies the following conditions:

(1) Uniformly inflationary: f ≤subT K(f) via a single index.
(2) Uniformly monotone: f ≤subT g =⇒ K(f) ≤subT K(g) uniformly.
(3) Uniformly conservative: f total =⇒ K(f) ≡subT f

′ via a single index.

Proof. (1) One can easily find an index i(n) such that Φi(n)[f](x) simulates f(n) no
matter what f and x are. Then we have f(n) = K(f)(i(n)); hence f ≤subT K(f)
via an index of λn.i(n).

(2) Assume f ≤subT g via d; that is, f ⊆ Φd[g]. If e ∈ dom(K(f)), Phie[f](e)
makes queries only within the domain of f . Therefore, the replies to these queries
by f and Φd[g] are identical. That is, Φe[f](e) and Φe[Φd[g]](e) perform the same
computation, especially whether they halt or not. One can effectively find an index
b(d, e) such that Φb(d,e)[g](x) simulates Φe[Φd[g]](e) no matter what g and x are.
Then we get K(f)(e) = K(g)(b(d, e)). Consequently, f ≤subT g via d implies
K(f) ≤subT K(g) via an index of λe.b(d, e).

(3) If f is total then so is K(f). Thus, K(f) = K0(f) = f ′. □
From these properties, we can automatically derive the strictness of K on hy-

perarithmetical functions. We say that a partial function f is hyperarithmetical if
it extends to a total ∆1

1 function.

Proposition 2.6. If J is uniformly inflationary, uniformly monotone, and uni-
formly conservative, then f <subT J(f) for any partial hyperarithmetical function
f . Indeed, f ≡subT J(f) implies ∅(α) <subT f for any computable ordinal α.

8 TAKAYUKI KIHARA AND KENG MENG NG

Proof. Assume J(f) ≤subT f . Let O be Kleene’s system of ordinal notations, and
let a ∈ O. We use ∅(a) to denote the iterated Turing jump of ∅ along the notation
a. If a = 2b and ∅(b) ≤subT f via pb then by monotonicity and conservativity, we
have ∅(a) ≡subT J(∅(b)) ≤subT J(f) ≤subT f via some index pa. By uniformity,
pb 7→ pa is computable. If a = 3 · 5e and ∅(φe(n)) ≤subT f via pφe(n) for any

n ∈ ω, then whenever the sequence (pφe(n))n∈ω is computable we have ∅(a) =⊕
n∈ω ∅(φe(n)) ≤subT f via some index pa, where (pφe(n))n∈ω 7→ pa is computable.

Hence, by effective transfinite induction, we get ∅(a) ≤subT f for any a ∈ O. □

Unfortunately, K does not satisfy strictness in general. In other words, K has a
fixed point.

Theorem 2.7. There exists a partial function f such that K(f) ≡subT f .

Proof. Let θΣe and θΠe be the eth Σ1
1 sentence and the eth Π1

1 sentence, respectively.
Define ψ as follows:

ψ(a, b) =

1 if both θΣa and θΠb are true

0 if both θΣa and θΠb are false

↑ otherwise

We claim K(ψ) ≤subT ψ. To see this, we simulate the computation of Φe[ψ](e)
for given e ∈ dom(K(ψ)). The history of the computation of Φe[ψ](e) of length s
is a sequence (i0, q0, a0, i1, q1, a1, . . . , is, qs) such that, for any k < s, ik = 0 and
Φe(e, a0, . . . , ak) ↓ = ⟨ik+1, qk+1⟩, and if qk = ⟨u, v⟩ then

either (θΣu is true and ak = 1) or (θΠv is false and ak = 0).(1)

This gives a Σ1
1-description of being a history of some computation. If e ∈

dom(K(ψ)), then we must have qk = ⟨u, v⟩ ∈ dom(ψ), which means that the truth
values of θΣu and θΠv are the same. Thus, the condition (1) can be changed to the
following:

either (θΠv is true and ak = 1) or (θΣu is false and ak = 0).(2)

This gives a Π1
1-description of being a history of some computation. Now,

Φe[ψ](e) halts if and only if there exists a sequence which is the history of Φe[ψ](e)
of some length s such that is = 1. This is described just by adding existential quan-
tifiers on natural numbers, so this also has Σ1

1-description θ
Σ
c(e) and Π1

1-description

θΠd(e). Therefore, for e ∈ dom(K(ψ)), whether Φe[ψ](e) halts or not can be decided

by looking at the value of ψ(c(e), d(e)). This verifies the claim. □

Question 1. Does there exist a uniformly inflationary, uniformly monotone, uni-
formly conservative, strict operator on the subTuring degrees?

3. Degree-theoretic properties

3.1. Density. Many degree structures, including the Turing degrees, are not glob-
ally dense, even though they may have some local substructures which are dense.
Interestingly, in contrast to those degree structures, the structure of the subTuring
degrees is globally dense.

Theorem 3.1. The subTuring degrees are dense; that is, if g <subT f then there
is h such that g <subT h <subT f .

THE SUBTURING DEGREES 9

In order to prove this, let us introduce a very useful “anti-cupping” lemma that
will be the source of many results. In order to describe a statement, we need the
following notion: For an oracle α, a set A ⊆ ω is α-immune if A has no α-c.e. subset.

Lemma 3.2. For α, β, f ∈ ωω, let A ⊆ ω be an (α⊕ β ⊕ f)-immune set. For any
g :⊆ ω → ω, if dom(g) is α-c.e., and g ≤subT (f ↾ A)⊕ β, then g ≤subT β.

Proof. Assume that g ≤subT (f ↾ A) ⊕ β via a partial computable function Φ. By
monotonicity, we have g ⊆ Φ[(f ↾ A) ⊕ β] ⊆ Φ[f ⊕ β], so there is no difference
between the computation of Φ[(f ↾ A) ⊕ β] and Φ[f ⊕ β] for input n ∈ dom(g).
Now, look at the queries q0, q1, . . . made during the computation of Φ[f ⊕ β](n),
take out the even queries 2p0, 2p1, . . . (that is, the queries asking to f), and put
Qn = {p0, p1, . . . }, which is the set of queries asking to f . Note that

∪
nQn is

clearly (f ⊕ β)-c.e. Furthermore, since g ⊆ Φ[(f ↾ A) ⊕ β], the queries to f that
we make for input n ∈ dom(g) must be contained in dom(f ↾ A) = A; that is,
if n ∈ dom(g), then Qn ⊆ A. Consider Q =

∪
{Qn : n ∈ dom(g)}, which is an

(α⊕β⊕f)-c.e. subset of A. By immunity, Q is finite. Since this is all the queries to
f during the computation of g by Φ, we obtain g ⊆ Φ[(f ↾ Q)⊕ β]. However, since
f ↾ Q is a finite function, it is computable, so we get g ≤subT β as desired. □

Lemma 3.2 suggests that all nonzero degrees have properties close to the so-
called strong anticupping property. Here, for an upper semilattice L, we say that
an element a ∈ L has the strong anticupping property if there exists b ∈ L such that
a ≤ b ∨ c implies a ≤ c for any c ∈ L. Note that A depends on β in Lemma 3.2, so
it does not show that strong anticupping property. However, it is powerful enough
to help prove various results discussed below.

A partial function f :⊆ ω → ω is quasiminimal if f is non-computable, but any
total function g ≤subT f is computable.

Proposition 3.3. Every nonzero subTuring degree bounds a quasiminimal subTur-
ing degree.

Proof. Let f : ⊆ ω → ω be a non-computable function. By Lemma 3.2, if A is
f -immune then every total function g ≤subT f ↾ A is computable. We also have
f ↾ A ≤subT f . Therefore, it suffices to construct an f -immune set A such that
f ↾ A is not computable.

At stage e, perform the following actions:

(1) Assume that A ↾ re has already been determined. Search for n > re
such that either φe(n) ↑ or φe(n) ̸= f(n). Note that such an n always
exists; otherwise φe(n) ↓ = f(n) for any n > re, which implies that f is
computable, a contradiction. Choose such an n, declare n ∈ A, and put
ue = n+ 1.

(2) Search for n > ue such that n ∈ W f
e , where W

f
e is the eth c.e. set relative

to f . If W f
e is infinite, such an n exists. For such an n, declare n ̸∈ A, and

put re+1 = n+ 1. If there is no such n, put re+1 = ue.

By the action (1), for any e we have φe(n) ̸= f(n) for some n ∈ A, so f ↾ A is
non-computable. By the action (2), the final obtained A is f -immune. Thus, by
the argument above, f ↾ A is quasiminimal. □

Now let us show density of the subTuring degrees.

10 TAKAYUKI KIHARA AND KENG MENG NG

Proof (Theorem 3.1). Let f, g :⊆ ω → ω be such that g <subT f . Assume that the
domain of g is α-c.e. As in the proof of Proposition 3.3, one can easily construct an
(α⊕f)-immune set A such that f ↾ A ̸≤subT g (by using the assumption f ̸≤subT g).
Then we have f ̸≤subT (f ↾ A)⊕ g; otherwise, by Lemma 3.2, f ≤subT (f ↾ A)⊕ g
implies f ≤subT g, a contradiction. Consequently, we get g <subT (f ↾ A)⊕g <subT

f . □
The above proof actually shows the existence of strong quasiminimal cover in

any nonempty interval of subTuring degrees. Here, we say that a is a strong quasi-
minimal cover of b if b < a and, for any total degree c, c ≤ a implies c ≤ b. This
is because if h ≤subT (f ↾ A) ⊕ g is total then h ≤subT g; hence (f ↾ A) ⊕ g is a
strong quasiminimal cover of g.

Many degree structures, including the Turing degrees, are known to be locally
countable, i.e., any given degree can bound only countably many different degrees.
Surprisingly, the structure of subTuring degrees is not locally countable. In fact,
any nonzero subTuring degree can bound continuum many different degrees.

Theorem 3.4. Any nonempty interval of subTuring degrees contains an antichain
of continuum many different degrees.

In other words, if g <subT f then there exists {hα}α<2ℵ0 such that g <subT

hα <subT f and hα ̸≤subT hβ whenever α ̸= β.

Proof. The proof is almost the same as the proof of Proposition 3.3. Let f, g :⊆ ω →
ω be such that g <subT f , and assume that the domain of g is α-c.e. We construct a
family {Ax}x∈2ω of continuum many subsets of ω such that each Ax is (α⊕Ay⊕f)-
immune for any y ̸= x. Moreover, we ensure that f ↾ Ax ̸≤subT g for any x ∈ 2ω.
Assuming that we could construct such a family, consider hx = (f ↾ Ax) ⊕ g for
any x ∈ 2ω. If x ̸= y, by Lemma 3.2, hy ≤subT hx would imply f ↾ Ay ≤subT g,
which is impossible by our assumption on {Ax}x∈2ω . Hence, {hx}x∈2ω gives an
antichain of continuum many subTuring degrees. Moreover, as in Theorem 3.1, one
can also see that g <subT hx <subT f . Therefore, it suffices to construct such a
family {Ax}x∈2ω .

At stage e, perform the following actions:

(1) Assume that Aσ ↾ re has already been determined for each σ ∈ 2e. Search
for n ∈ dom(f) with n > re such that either Φe[g](n) ↑ or Φe[g](n) ̸= f(n).
Note that such an n always exists; otherwise Φe[g](n) ↓ = f(n) for any
n ∈ dom(f) with n > re, which implies that f ≤subT g, a contradiction.
Choose such an n, declare n ∈ Aσ for any σ ∈ 2e, and put ue = n+ 1.

(2) There are 2e+1 substages in the strategy to guarantee relative immunity.
At substage 0, put u0e = ue. At substage t < 2e−1, we focus on the t-
th string σ⌢i ∈ 2e+1. Search for a finite string ρ extending Aσ ↾ ute and
a number n > ute such that n ∈ Wα⊕ρ⊕f

e . If such ρ and n exist, then
declare that Aσ⌢i extends ρ, and protect Aσ⌢i ↾ |ρ|+ 1. Moreover, declare
n ̸∈ Aτ for any string τ ̸= σ⌢i of length e + 1. This means that we put
ut+1
e = max{|ρ|, n}+1. If there exist no such ρ and n, put Aσ⌢i = Aσ and
ut+1
e = ue. If t = 2e+1 − 1 then put re = ut+1

e .

Finally, we define Ax =
∪

σ≺xAσ for any x ∈ 2ω. By the action (1), we get
f ↾ Aσ ̸⊆ Φe[g] for any σ ∈ 2e, so f ↾ Ax ̸⊆ Φe[g] since Aσ ⊆ Ax for any
x ≻ σ; hence f ↾ Ax ̸≤subT g for any x ∈ 2ω. By the action (2), since Ax extends
Ax↾e+1 ↾ ute for a suitable t, if Wα⊕Ax⊕f

e is infinite, we always find ρ and n > ute

THE SUBTURING DEGREES 11

such that n ∈ Wα⊕ρ⊕f
e . If x ↾ e ̸= y ↾ e, then the action (2) ensures n ̸∈ Ay,

so we obtain Wα⊕Ax⊕f
e ̸⊆ Ay. If x ̸= y then there is k such that x ↾ k ̸= y ↾ k,

so given e, consider d ≥ k such that WB
d = WB

e for any B (for example, add
meaningless lines to the program e to pad its size). By the above argument, we get

Wα⊕Ax⊕f
e =Wα⊕Ax⊕f

d ̸⊆ Ay. Consequently, Ay is (α⊕Ax ⊕ f)-immune. □

Note that hx in Theorem 3.4 is a strong quasiminimal cover of g for any x ∈ 2ω.

3.2. Jump inversion. In Turing degree theory, the Friedberg jump inversion theo-
rem states that for every total function h ≥T ∅′ there is a total function f such that
f ′ ≡T h. In enumeration degree theory, this has been improved to the quasiminimal
jump inversion theorem. Although the proof is different from the usual method,
one can also prove the (quasiminimal) jump inversion theorem for the subTuring
degrees. Here, we adopt the jump operator K introduced in Section 2.3.

Theorem 3.5. For any partial function h ≥subT ∅′ there exists a quasiminimal
partial function f such that K(f) ≡subT h ≡subT f ⊕ ∅′.

Proof. It suffices to show that, for any partial function h, there exists a quasimini-
mal f such that K(f) ≤subT h ⊕ ∅′ ≤subT f ⊕ ∅′ since ∅′ ≤subT K(∅) ≤subT K(f)
by monotonicity and conservativity. Let us construct a ∅′-computable increasing
sequence (ak)k∈ω of natural numbers. This is the coding location of h in f ; that is,
we define f(ak) = h(k) for each k ∈ ω and let f be undefined except on {ak}k∈ω.

Assume that (ak)k<e has already been defined. For each partial function σ
defined only on {ak}k<e, ask ∅′ if the computation of Φe[σ](e) makes a query greater
than ae−1. If so, let qσ be the first such query plus 1, or else let qσ = ae−1 + 1.
Similarly, ask ∅′ if the computation of Φe[σ](n) for some n makes a query greater
than ae−1. If so, let rσ be the first such query plus 1, or else let rσ = ae−1 + 1.
Then let ae be the maximum value of these qσ and rσ’s.

This completes the construction. We claim that the computation of Φe[f](e) is
determined by Φe[f ↾ ae−1 +1](e). Otherwise, this computation creates a query to
f greater than ae−1. The computation is performed by Φe[f ↾ ae−1 + 1](e) until
just before the first such query q is created. Note that the domain of σ := f ↾
ae−1 +1 is {ak}k<e, so our construction ensures ae−1 < q < qσ ≤ ae, which implies
q ̸∈ dom(f). Therefore, Φe[f](e) does not halt.

Observe that (ak)k∈ω is ∅′-computable. Thus, it is clear from the definition of f
that h ≤subT f ⊕ ∅′ and f ≤subT h⊕ ∅′ hold. Indeed, the graph of f is computable
in h⊕ ∅′. We show that K(f) ≤subT h⊕ ∅′. To compute K(f)(e), first use h⊕ ∅′
to recover (ak)k<e and the graph of f ↾ ae−1 + 1. Ask ∅′ which of the following is
true:

(1) Φe[f ↾ ae−1 + 1](e) makes a query ≤ ae−1 that is different from any of
{ak}k<e, or makes a query that is greater than ae−1.

(2) Φe[f ↾ ae−1 + 1](e) halts.
(3) Otherwise. That is, Φe[f ↾ ae−1 + 1](e) does not halt even though it only

makes queries in {ak}k<e.

Since (ak)k<e and f ↾ ae−1+1 are finite, this decision can be performed with the
unrelativized halting problem ∅′. By the above construction, if (1) holds, K(f)(e) ↑;
if (2) holds, K(f)(e) = 1; and if (3) holds, K(f)(e) = 0. This shows K(f) ≤subT

h⊕ ∅′.

12 TAKAYUKI KIHARA AND KENG MENG NG

For quasiminimality, if Φe[f] is total, this computation can be simulated by
Φe[f ↾ ae−1 +1]. Otherwise, Φe[f ↾ ae−1 +1](n) for some n makes a query q larger
than ae−1, but by the same argument as in Claim above, for σ := f ↾ ae−1 + 1 is
{ak}k<e, our construction ensures ae−1 < q < rσ ≤ ae, which implies q ̸∈ dom(f).
Thus, Φe[f] is computable since this computation uses only finite information on
f . □

3.3. Minimal pair. Next, let us analyze the properties of subTuring meets. Turing
degrees do not form a lattice, but there are several pairs of Turing degrees having
a meet. The following results lead to the conclusion that this Turing meet and the
subTuring meet are never coincident. In fact, every total degree is meet-irreducible
within the total degrees:

Theorem 3.6. For any total functions f, g, h : ω → ω, if f ∩ g ≤subT h then either
f ≤subT h or g ≤subT h holds.

Proof. We construct Turing functionals Ψ and ∆ fulfilling the following require-
ment:

Re : (∀f, g ∈ 2ω) Ψf ∩∆g ⊆ Φh
e =⇒ f ≤subT h or g ≤subT h.

Here Ψf∩∆g is the intersection of Ψf and ∆g when identifying a function with its
graph. That is, if (and only if) both Ψf (n) and ∆g(n) converge to the same value,
(Ψf ∩∆g)(n) halts at the value. Obviously, Ψf ∩∆g ≤subT f ∩ g, so it is sufficient
to satisfy this requirement. Rewriting Re a little more concretely according to the
actual strategy, we will ensure the following:

Re : (∀f, g ∈ 2ω) [(∃n) Ψf (n) ↓ = ∆g(n) ↓ ≠ Φh
e (n)] or f ≤subT h or g ≤subT h.

Strategy: Let us describe the Re-strategy. The strategy must operate without
knowing what f and g are and with all possibilities of f, g ∈ 2ω in mind. This
strategy consists of infinitely many substrategies. The (s, t)-th substrategy proceeds
as follows:

(1) For any f with f(s) = i, put Ψf (e, s, t, i, j) = 0. Similarly, for any g with
g(t) = j, put ∆g(e, s, t, i, j) = 0.

(2) Wait for Φh
e (e, s, t, i, j) ↓= 0 for some i, j < 2.

If no such i, j exists, then proceed to the next stage e+ 1. In this case,
Ψf (e, s, t, f(s), g(t)) = ∆g(e, s, t, f(s), g(t)) = 0 ̸= Φh

e (e, s, t, f(s), g(t)), so
the requirement Re is satisfied.

If such i and j exist, fix the first pair i, j found.
(3) For any f with f(s) = 1 − i, put Ψf (e, s, t, i, j) = 1. Similarly, for any g

with g(t) = 1− i, put ∆g(e, s, t, i, j) = 1.
Note that for any f, g with ⟨f(s), g(t)⟩ = ⟨1−i, 1−j⟩ then Ψf (e, s, t, i, j) =

∆g(e, s, t, i, j) = 1 ̸= 0 = Φh
e (e, s, t, i, j), so the requirement Re is satisfied.

(4) Wait for Φh
e (e, s, t, 1 − i, j) ↓= 0. While waiting, invoke the ⟨s + 1, t⟩-th

substrategy.
If we wait forever, for any f, g with ⟨f(s), g(t)⟩ = ⟨1 − i, j⟩, then by

(1), Ψf (e, s, t, 1 − i, j) = ∆g(e, s, t, 1 − i, j) = 0 ̸= Φh
e (e, s, t, 1 − i, j), so

the requirement Re is satisfied. Thus, together with (3) we see that Re is
satisfied for any value of g(t) when f(s) = 1− i.

(5) Suppose that, after waiting for a while, Φh
e (e, s, t, 1 − i, j) ↓= 0 occurs.

While waiting, the Re-strategy is still running, so suppose that the substrat-
egy currently in operation is (s′, t) (the (s, t)-strategy will be abandoned

THE SUBTURING DEGREES 13

when t increases, so we may assume that the second coordinate remains at
t).

Once we recognize that we reach (5), if f(s) = i, then put Ψf (e, s, t, 1−
i, j) = 1; similarly, if g(s) = 1−j, then put ∆g(e, s, t, 1−i, j) = 1. Then stop
the currently running substrategy and start a new substrategy (s′, t+ 1).

In this case, if ⟨f(s), g(s)⟩ = ⟨i, 1−j⟩, then Ψf (e, s, t, 1−i, j) = ∆g(e, s, t, 1−
i, j) = 1 ̸= 0 = Φh

e (e, s, t, 1 − i, j), so the requirement Re is satisfied. To-
gether with (3), we see that Re is satisfied for any value of f(s) when
g(t) = 1 − j. However, since the fulfillment of the requirement in (4)
with ⟨f(s), g(s)⟩ = ⟨1− i, j⟩ has been withdrawn, Re is not satisfied when
g(t) = j.

Verification: Let us check that the requirement Re is satisfied by this construction.

Case 1: If we wait forever for (2) in either substrategy, the requirement Re is clearly
satisfied.

Hereafter, we write i and j chosen in the state (2) of the (s, t)-substrategy as
is,t and js,t, respectively. Note that (s, t) 7→ is,t, js,t is h-computable since the
substrategy proceeds in an h-computable process.

Case 2: Consider the case where all substrategies pass through (3) but t converges
to a finite value. In this case, for some s0, the substrategies after (s0, t) do not reach
(5) but wait at (4) and continue to activate the next substrategy. As described in
(4), the requirement Re is satisfied for any value of g(t) when f(s) = 1 − is,t.
That is, the requirement Re is not yet satisfied only for f(s) = is,t for any s > s0.
However, in this case, as s 7→ is,t = f(s) is h-computable, one derives f ≤subT h.

Case 3: Consider the case where t diverges to infinity. In this case, for each t, (5)
occurs for j = jst,t defined by some substrategy (st, t). As described in (5), the
requirement Re is satisfied for any value of f(st) when g(t) = 1 − jst,t. That is,
the requirement Re is not yet satisfied only for g(t) = jst,t for any t. Note that
one can h-computably recognize what jst,t is by waiting for the occurrence of (5),
so t 7→ jst,t is h-computable. Thus, in this case, g ≤subT h is derived and the
requirement Re is satisfied. □

Corollary 3.7. The meet of two incompatable total subTuring degrees is nontotal.

This leads to the observation that, although the existence of a minimal pair is
well known for Turing degrees, it does not form a minimal pair in the subTuring
degrees. Here, if a lattice L has a bottom element 0, a pair (a, b) of elements in L
is called a minimal pair if a, b > 0 and a ∧ b = 0.

Corollary 3.8. There exists no minimal pair of total subTuring degrees.

3.4. Distributivity. A lattice is distributive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). We
now give a proof of non-distributivity of the subTuring degrees.

Theorem 3.9. The subTuring lattice is not distributive.

Proof. We construct partial functions f :⊆ ω × 2 × 2 → ω and g, h :⊆ ω → 2 such
that (f⊕g)∩(f⊕h) ̸≤subT f⊕(g∩h). It suffices to fulfill the following requirement:

Re : (f ⊕ g) ∩ (f ⊕ h) ̸⊆ Φe[f ⊕ (g ∩ h)].

14 TAKAYUKI KIHARA AND KENG MENG NG

Given e, we need to find c, d, x such that ((f ⊕ g) ∩ (f ⊕ h))(c, d, x) ↓ ≠ Φe[f ⊕
(g ∩ h)](c, d, x). Given n, consider the following Turing functionals Ψn and Γn:

Ψn[f ⊕ g](x) = f(n, g(n), 0) Γn[f ⊕ h](x) = f(n, h(n), 1)

If we write indices of Ψn and Γn as cn and dn, respectively, we actually guarantee
the following requirement:

Re : ∃n, x [Ψn[f ⊕ g](x) ↓ = Γn[f ⊕ h](x) ↓ ̸= Φe[f ⊕ (g ∩ h)](cn, dn, x)].

By the definition of the meet ∩, it is easy to see that this modified requirement
implies the first proposed requirement.

Strategy: At stage e, operate the strategy to satisfy the requirement Re. Induc-
tively, assume that we have constructed finite functions fe, ge, he and an auxiliary
parameter ne. We also assume that, for any t < ne, fe(t, i, j), ge(t) and he(t) have
already been determined, and for any t ≥ ne, fe(t, i, j), ge(t) and he(t) are unde-
fined. We refer to a triple of the form ⟨t, i, j⟩ as a level t input. Now let c and d be
indices of Ψ := Ψne and Γ := Γne , respectively.

This strategy consists of infinitely many rounds. First, regarding the computa-
tion of Φe[f ⊕ (g ∩ h)](c, d, x), we have the following three possibilities.

(1a) Φe[f ⊕ (g ∩ h)](c, d, x) does not make a query, or makes a query only to f ,
which is of level < ne.

(1b) Φe[f ⊕ (g ∩ h)](c, d, x) makes a level ≥ ne query to f .
(1c) Φe[f ⊕ (g ∩ h)](c, d, x) makes a query to g ∩ h.
Here, in the (k+1)st round, we ask about the subsequent queries after the query

taken up in the kth round. As we will see later, no action is taken when advancing
a round, always leaving room for the same action as in the first round. Therefore,
follow the discussion as if we were in the first round.

Case (1a): Put ge+1(ne) = he+1(ne) = 0, and set the level ne values of fe+1

appropriately so that fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1), whose value is
different from Φe[fe ⊕ (ge ∩ he)](c, d, x). Put ne+1 = ne + 1, and proceed to stage
e+ 1.

Verification: Since Φe[fe⊕ (ge∩he)](c, d, x) only makes level < ne queries to f , the
behavior of this computation coincides with Φe[f⊕(g∩h)](c, d, x). By the action of
the strategy, we have Ψ[f ⊕ g](x) = f(e, g(ne), 0) = f(e, h(ne), 1) = Γ[f ⊕ h](x) ↓,
whose value is different from Φe[f ⊕ (g ∩ h)](c, d, x). Thus, the requirement Re is
satisfied.

Case (1b): There is a query to f of the form (m, i, j) for some m ≥ ne. Declare
fe+1(m, i, j) ↑. Put ge+1(ne) = he+1(ne) = 1− i. Since (m, i, j) ̸= (ne, ge+1(ne), 0)
and (m, i, j) ̸= (ne, he+1(ne), 1), one can set the level ne values of fe+1 so that
fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1). Put ne+1 = m + 1, and proceed to
stage e+ 1.

Verification: Φs[f⊕(g∩h)](d, e, x) makes a query (m, i, j) ̸∈ dom(f), so the compu-
tation does not halt. We also have Ψ[f ⊕g](x) = f(ne, g(ne), 0) = f(ne, h(ne), 1) =
Γ[f ⊕ h](x) ↓. Thus, the requirement Re is satisfied.

Case (1c): The computation makes a query (a, b, y) to g ∩ h. By the definition of
the meet g ∩ h, the oracle’s response to this query is the common value of Φa[g](y)

THE SUBTURING DEGREES 15

and Φb[h](y) (if defined). Let us now go into the computation processes of Φa[g](y)
and Φb[h](y). We have the following possibilities:

(2a) Either Φa[g](y) or Φb[h](y) does not halt, but makes only small queries less
than ne.

(2b) Either Φa[g](y) or Φb[h](y) halts after making only small queries less than
ne.

(2c) Either Φa[g](y) or Φb[h](y) makes a query larger than ne.
(2d) None of the above; that is, both Φa[g](y) and Φb[h](y) make a query ne.

Case (2a): Put ge+1(ne) = he+1(ne) = 0, and set the values appropriately so that
fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1). Put ne+1 = ne + 1, and proceed to
stage e+ 1.

Verification: Recall that we are in Case (1c), where Φe[f ⊕ (g ∩ h)](c, d, x) makes a
query (a, b, y) to g∩h, and we then enter Case (2a), where Φa[ge](c) or Φb[he](c) is
undefined, so (g∩h)(a, b, y) is also undefined. This means that Φe[f⊕(g∩h)](c, d, x)
is accessing outside the domain of the oracle, so the computation does not halt. By
our action, we have Ψ[f ⊕ g](x) = f(ne, g(ne), 0) = f(ne, h(ne), 1) = Γ[f ⊕ h](x) ↓,
so the requirement Re is satisfied.

Case (2b): In this case, the common value of Φa[g](c) and Φb[h](c) is determined
by the current finite information ge or he. Then, proceed to the next round k + 1;
that is, resume the computation of Φe[f⊕(g∩h)](c, d, x), and check the conditional
branch (1) again for the subsequent queries of the query (a, b, y) taken up this time.

Case (2c): If Φa makes a query m > ne to g, then declare g(m) ↑. Do the same for
Φb and h. Put ge+1(ne) = he+1(ne) = 0, and set the values appropriately so that
fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1). Put ne+1 = ne + 1, and proceed to
stage e+ 1.

Verification: Recall that we are in Case (1c), where Φe[f ⊕ (g ∩ h)](c, d, x) makes a
query (a, b, y) to g∩h, and we then enter Case (2c), where Φa makes a querym > ne

to g. Then our action ensures m ̸∈ dom(g), so we have Φa[g](c) ↑. Do the same
for the symmetric case. If Φa[ge](c) or Φb[he](c) is undefined, then (g ∩ h)(a, b, y)
is also undefined, which means that Φe[f ⊕ (g ∩ h)](c, d, x) is accessing outside the
domain of the oracle, so the computation does not halt. By our action, we have
Ψ[f ⊕ g](x) = f(ne, g(ne), 0) = f(ne, h(ne), 1) = Γ[f ⊕ h](x) ↓, so the requirement
Re is satisfied.

Case (2d): In this case, both Φa[g](y) and Φb[h](y) make only queries less than or
equal to ne. Therefore, depending on the values of g(ne) and h(ne), at most four
different computations appear. Looking at these four computations, we have the
following possibilities:

(3a) Either Φa[g](y) or Φb[h](y) may not halt, depending on the value of g(ne)
or h(ne).

(3b) Either Φa[g](y) or Φb[h](y) may make a query greater than ne, depending
on the value of g(ne) or h(ne).

(3c) Φa[g](y) or/and Φb[h](y) have the possibility of halting computations of
different outputs, depending on the value of g(ne) or/and h(ne).

(3d) Otherwise, that is, no matter what values g(ne) and h(ne) are set to,
Φa[g](y) and Φb[h](y) both halts and return the same output, making only
queries less than or equal to ne.

16 TAKAYUKI KIHARA AND KENG MENG NG

Case (3a): For instance, if setting ge+1(ne) = i forces Φa[ge+1](y) not to halt,
then set he+1(ne) to any value. Do the same for the symmetric case. Set the
values appropriately so that fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1). Put
ne+1 = ne + 1, and proceed to stage e+ 1.

Case (3b): For instance, if setting ge+1(ne) = i forces Φa[ge+1](y) to make a query
m > ne, then declare ge+1(m) ↑, and set he+1(ns) to any value. Do the same for
the symmetric case. Set the values appropriately so that fe+1(ne, ge+1(ne), 0) ↓=
fe+1(ne, he+1(ne), 1). Put ne+1 = ne + 1, and proceed to stage e+ 1.

Case (3c): If setting ge+1(ne) = i and he+1(ne) = j force the condition Φa[g](y) ̸=
Φb[h](y), then set the values appropriately so that fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1).
Put ne+1 = ne + 1, and proceed to stage e+ 1.

Otherwise, put gie+1(ne) = i for each i < 2, and assume Φa[g
0
e+1](y) ̸= Φa[g

1
e+1](y).

Then put he+1(ne) = 0. Assuming that (3a) does not hold, Φb[he+1](y) must halt,
so Φb[he+1](y) ̸= Φa[g

i
e+1](y) for some i < 2. Then put ge+1 = gie+1 for such

i. Do the same for the symmetric case. Set the values appropriately so that
fe+1(ne, ge+1(ne), 0) ↓= f(ne, he+1(ne), 1). Put ne+1 = ne + 1, and proceed to
stage e+ 1.

Verification: The requirement Re is satisfied in the Case (3a) for the same reason
as (2a), and the Case (3b) for the same reason as (2c). The same reasoning can be
applied to the Case (3c), since we ensure Φa[ge+1](y) ̸= Φb[he+1](y), which implies
(a, b, y) ̸∈ dom(g ∩ h).
Case (3d): In this case, the common value of Φa[g](y) and Φb[h](y) is determined by
the current finite information ge or he (since the computations ask only for values
of g ↾ ne + 1 and h ↾ ne + 1 by ¬(2c), and the results of these computations do
not depend on the values of g(ne) and h(ne)). Then, proceed to the next round
k + 1; that is, resume the computation of Φe[f ⊕ (g ∩ h)](c, d, x), and check the
conditional branch (1) again for the subsequent queries of the query (a, b, y) taken
up this time.

Verification: The next round proceeds only if the strategy reaches (2b) or (3d). In
this case, the response to the query (a, b, y) made at (1c) can be computed only
from the information of ge = g ↾ ne and he = h ↾ ne. Moreover, the strategy does
not take any action at (2b) or (3c), so nothing interferes with the next round of
operation. Also, if the strategy arrives at a state other than (2b) or (3d) at some
round, then the requirement Re is satisfied there.

Infinite rounds: If the strategy keeps arriving only at (2b) or (3d), it means that the
round keeps going infinitely, and this also means, in particular that (1c) is passed
through infinitely many times. Then, the computation of Φe[f ⊕ (g ∩ h)](c, d, x)
continues to make queries to g∩h infinitely many times, so Φe[f⊕(g∩h)](c, d, x) does
not halt. In this case, put ge+1(ne) = he+1(ne) = 0, and set the values appropriately
so that fe+1(ne, ge+1(ne), 0) ↓= fe+1(ne, he+1(ne), 1). Put ne+1 = ne + 1, and
proceed to stage e+1. Then the requirement Re is satisfied for the same reason as
(1a). □

A lattice L is modular if, for any a, b, c ∈ L, a ≤ b implies a∨ (b∧ c) = b∧ (a∨ c).
Obviously, a distributive lattice is always modular. By making a small modification
to the proof of Theorem 3.9, it is actually possible to prove that the subTuring
lattice is not modular.

THE SUBTURING DEGREES 17

Theorem 3.10. The subTuring lattice is not modular.

Proof (Sketch). We construct partial functions f :⊆ ω×2×2 → ω and g, h :⊆ ω → 2
such that (f ⊕ g) ∩ (f ⊕ h) ̸≤subT f ⊕ (g ∩ h). It suffices to fulfill the following
requirement:

Re : (f ⊕ g) ∩ (f ⊕ h) ̸⊆ Φe[f ⊕ (g ∩ (f ⊕ h))].

Given e, we need to find c, d, x such that ((f ⊕ g) ∩ (f ⊕ h))(c, d, x) ↓ ≠ Φe[f ⊕
(g∩h)](c, d, x). For the construction, the description becomes a little more compli-
cated, but the idea of the proof is exactly the same as Theorem 3.9. For example,
item (1c) is modified as follows.

(1c) Φe(f ⊕ (g ∩ (f ⊕ h))) makes a query to g ∩ (f ⊕ h).

If this happens, assume that the computation makes a query (a, b, y) to g ∩ (f ⊕
h). Then, go into the computation processes of Φa[g](y) and Φb[f ⊕ h](y). The
discussion that follows is exactly the same as Theorem 3.9, but for example, item
(2c) is modified as follows.

(2c) The computation of Φa[g](y) or Φb[f ⊕ h](y) makes either a query to g or
h which is larger than ne, or a query to f which is of level ≥ ne.

Note that a query to f may be at level ne. In this case, the requirement is
satisfied by exactly the same action as in Case (1b). If there is a query to g or h
that is greater than ne, the situation is the same as Case (2c) in Theorem 3.9.

In Case (2d), both Φa[g](y) and Φb[f ⊕ h](y) can only make queries to g and h
which are less than or equal to ne and queries to f of level less than ne. Therefore,
the situation is exactly the same as Case (2d) in Theorem 3.9, so the exact same
argument applies. □

While the structure is not a distributive lattice, we can nonetheless find incom-
parable subTuring degrees that satisfy the distributive law:

Proposition 3.11. There are partial functions f0, f1, f2 :⊆ ω → ω such that their
subTuring degrees are pairwise incomparable, and f0 ⊕ (f1 ∩ f2) ≡subT (f0 ⊕ f1) ∩
(f0 ⊕ f2).

Similarly, there are partial functions e0, e1, e2 :⊆ ω → ω such that their subTur-
ing degrees are pairwise incomparable, and e0 ∩ (e1 ⊕ e2) = (e0 ∩ e1)⊕ (e0 ∩ e2).

Proof. We claim that given any subTuring incomparable partial functions g, h such
that g ∩ h ̸≡subT ∅, we can find sets A and B such that

(1) g ↾ A ≰subT h and h ↾ B ≰subT g.
(2) g ≰subT (g ↾ A)⊕ (h ↾ B) and h ≰subT (g ↾ A)⊕ (h ↾ B).
(3) g ∩ h ≰subT g ↾ A and g ∩ h ≰subT h ↾ B.

If these conditions are satisfied, we can take f0 = g∩h, f1 = g ↾ A and f2 = h ↾ B
and take e0 = f1 ⊕ f2, e1 = g and e2 = h. The condition (1) implies f1, f2 ̸≤subT

f0, and the condition (3) implies that f0 ̸≤subT f1, f2 and f1 is incomparable
with f2. Hence, f0, f1, f2 are pairwise subTuring incomparable. The condition (2)
implies e1, e2 ̸≤subT e0, and the condition (1) implies that e0 ̸≤subT e1, e2 and e1 is
incomparable with e2. Hence, e0, e1, e2 are pairwise subTuring incomparable.

Now, we have f1∩f2 = (g ↾ A)∩(h ↾ B) ≤subT g∩h = f0, so f0⊕(f1∩f2) ≡subT

f0. Moreover, f0 ≤subT f0 ⊕ f1 = (g ∩ h) ⊕ (g ↾ A) ≤subT g, and similarly
f0 ≤subT f0 ⊕ f2 ≤subT h. Hence, f0 ≤subT (f0 ⊕ f1) ∩ (f0 ⊕ f2) ≤subT g ∩ h = f0.
This shows f0 ⊕ (f1 ∩ f2) ≡subT f0 ≡subT (f0 ⊕ f1) ∩ (f0 ⊕ f2).

18 TAKAYUKI KIHARA AND KENG MENG NG

Next, we have e0 = (g ↾ A)⊕(h ↾ B) ≤subT g⊕h = e1⊕e2, so e0∩(e1⊕e2) ≡subT

e0. Moreover, g ↾ A ≤subT ((g ↾ A)⊕ (h ↾ B))∩ g = e0 ∩ e1 ≤subT e0, and similarly,
h ↾ B ≤subT e0 ∩ e2 ≤subT e0. Hence, e0 = (g ↾ A)⊕ (h ↾ B) ≤subT (e0 ∩ e1)⊕ (e0 ∩
e2) ≤subT e0. This shows e0 ∩ (e1 ⊕ e2) ≡subT e0 ≡subT (e0 ∩ e1)⊕ (e0 ∩ e2).

In order to show the claim, we need to construct A ↾ s and B ↾ s for each
s; assume that these have been decided for s, and our next step is to satisfy a
requirement of type (1), (2) or (3) above.

To satisfy (1) we pick n > s such that n ∈ dom(g) and g(n) ̸= Φ[h](n), where
Φ is the next Turing functional we are diagonalizing against. This n must exist
lest g ≤subT h. We then set A ↾ n + 1 = (A ↾ s) ∪ {n}, which will ensure that
g ↾ A ̸⊆ Φ[h]. We act similarly to make h ↾ B ̸⊆ Φ[g].

To satisfy (2) we check if there is some x ∈ dom(g) such that the computation
Φ[(g ↾ (A ↾ s))⊕ (h ↾ (B ↾ s))](x) makes a query to the oracle g(n) or h(n) for some
n > s. If no, then g ⊆ Φ[(g ↾ A)⊕ (h ↾ B)] implies that g ⊆ φ for some partial
computable function simulating Φ with the given finite oracle, which is impossible.
If the answer is yes, witnessed by some least n > s, we take A ↾ n + 1 = (A ↾ s)
and B ↾ n + 1 = (B ↾ s), in particular setting n ̸∈ A ∪ B, and therefore ensuring
g ̸⊆ Φ[(g ↾ A)⊕ (h ↾ B)]. We do similarly to make h ̸⊆ Φ[(g ↾ A)⊕ (h ↾ B)].

To satisfy (3) we check if there is some x ∈ dom(g∩h) such that the computation
Φ[g ↾ (A ↾ s)](x) queries g(n) for some n > s. If not, then just like in (2) above, we
have that g ∩ h ̸⊆ Φ[g ↾ A], unless g ∩ h ≡subT ∅. If yes, then we just keep n ̸∈ A
by taking A ↾ n+ 1 = (A ↾ s) which will ensure that g ∩ h ̸⊆ Φ[g ↾ A]. We proceed
similarly to make g ∩ h ̸⊆ Φ[h ↾ B]. In fact, note that we can replace g ∩ h by any
function which is ̸≡subT ∅. □

3.5. Irreducibility. For a lattice L, an element a ∈ L is join-irreducible if, for any
b, c ∈ L, a = b ∨ c implies either a = b or a = c.

Theorem 3.12. There exists a nonzero join-irreducible subTuring degree.

Proof. We construct a noncomputable partial function f such that for any g, h ≤subT

f if f ≤subT g⊕h then either f ≤subT g or f ≤subT h holds. It suffices to fulfill the
following requirements:

Pe : f ̸⊆ φe.

Re,k,j : If g ⊆ Φe[f] and h ⊆ Φk[f] and f ⊆ Φj [g ⊕ h]

then f ≤subT g or f ≤subT h.

At the beginning of the stage s, assume that a computable infinite set Is ⊆ ω
has been constructed, and f ↾ min Is has been determined. That is, f ↾ min Is is
guaranteed not to change after stage s.

Pe-strategey: Assume s = 2e. For n = min Is, one can choose the value of f(n) so
that f(n) ↓≠ φe(n). Put Is+1 = {x ∈ Is : x > n}. Then, the values of f up to n
will be protected. The requirement Pe is clearly satisfied.

Re,k,j-strategy: Assume s = 2⟨e, k, j⟩+ 1. This strategy consists of infinitely many
substrategies. The tth substrategy works with the t-th smallest element nt of Is.
In particular, n0 = min Is, and f ↾ n0 has already been determined. As long
as we focus only on this one substrategy, it is somewhat similar to the strategy of
Theorem 3.9. In particular, the tth substrategy itself also consists of infinitely many

THE SUBTURING DEGREES 19

rounds. First, regarding the computation of Φj [g ⊕ h](nt), we have the following
possibilities.

(1a) Φj [g ⊕ h](nt) is undefined without making a query.
(1b) Φj [g ⊕ h](nt) halts without making a query.
(1c) Φj [g ⊕ h](nt) makes a query for g or h.

Here, in the kth round, we ask about the kth query during the computation of
Φj [g⊕h](nt), but the details will be described later, so at first, follow the discussion
as if we were in the first round.

Case (1a): In this case, by setting f(nt) ↓ one can guarantee that f(nt) ̸= Φj [g ⊕
h](nt). Here, if it is not the first round, set f(nt) ↓ to be a value consistent with
the current assumption on f(nt) (made by the previous rounds). Put Is+1 = {x ∈
Is : x > nt}, and proceed to stage s+ 1.

Case (1b): If we are in the first round, the computation halts without ever creating
a query, so the value of Φj [f ⊕ g](nt) is constant regardless of what oracle f ⊕ g is.
In this case, by setting f(nt) ↓ to be an appropriate value, we can guarantee that
f(nt) ̸= Φj [g ⊕ h](nt). Put Is+1 = {x ∈ Is : x > nt} and proceed to stage s+ 1.

If the round has already progressed, there may already be a restriction on the
value of f(nt), which may prevent diagonalization, so the action in this case is
discussed in detail below.

Case (1c): Since the argument is symmetric, assume that the computation have
made a query to g. If the assumption g ⊆ Φe[f] is satisfied, then the solution of
the query m to g should be obtained from the solution of Φe[f](m). In this case,
we have the following possibilities.

(2a) Φe[f](m) does not halt, but makes only small queries less than n0.
(2b) Φe[f](m) halts after making only small queries less than n0.
(2c) Φe[f](m) makes a query n′ ≥ n0 with n′ ̸= nt.
(2d) None of the above; that is, Φe[f](m) makes a query nt.

Case (2a): In this case, m ̸∈ dom(g) is ensured, so Φj [g ⊕ h](nt) ↑. As in the Case
(1a), by setting f(nt) ↓ one can guarantee that f(nt) ̸= Φj [g ⊕ h](nt). Here, set
f(nt) ↓ to be a value consistent with the current assumption on f(nt) (made by
the previous rounds). Put Is+1 = {x ∈ Is : x > nt} and proceed to stage s+ 1.

Case (2b): It means that the solution to the query m for g has already been
determined from the current information in f ↾ n0. In this case, proceed to round
k + 1 of the tth substrategy.

Case (2c): By setting f(n′) ↑ one can force g(m) ↑, which also forces Φj [g ⊕ h](nt) ↑.
Since n′ ̸= nt, as in the Case (1a), one can set f(nt) ↓ to guarantee that f(nt) ̸=
Φj [g⊕h](nt). Here, set f(nt) ↓ to be a value consistent with the current assumption
on f(nt) (made by the previous rounds). Put Is+1 = {x ∈ Is : x > nt, n

′} and
proceed to stage s+ 1.

Case (2d): In this case, the computation may depend on the value of f(nt) ∈ {0, 1},
so the case is divided again.

(3a) Φe[f](m) may make a query n′ ≥ n0 with n′ ̸= nt, depending on the value
of f(nt).

(3b) Φe[f](m) may not halt, depending on the value of f(nt).

20 TAKAYUKI KIHARA AND KENG MENG NG

(3c) Otherwise, that is, Φe[f](m), for any value of f(nt), halts after only making
a query n′ < n0 or n′ = nt.

Here, if the value of f(nt) has already been determined, we only look at that
value.

Cases (3a) and (3b): Set f(nt) to the corresponding value. In this case, we perform
the same action as in the Cases (2c) and (2a), respectively, and then proceed to
stage s+ 1.

Case (3c): In this case, proceed to round k + 1 of the tth substrategy. However,
in this case, the computation of Φe[f](m) may depend on the value of f(nt), so we
perform the round k + 1 when f(nt) = 0 and when f(nt) = 1 in parallel.

Next rounds: The next round proceeds only if the substrategy reaches (2b) or (3c).
If the substrategy keeps arriving only at (2b) or (3c) for some value of f(nt), it
means that the round keeps going infinitely, and this also means, in particular
that (1c) is passed through infinitely many times. In this case, the computation of
Φj [g⊕h](nt) continues to make queries infinitely many times, so Φj [g⊕h](nt) does
not halt. Thus, by setting f(nt) ↓ one can guarantee that f(nt) ̸= Φj [g ⊕ h](nt).
Here, set f(nt) ↓ to be a value consistent with the current assumption on f(nt).
Put Is+1 = {x ∈ Is : x > nt}, and proceed to stage s+ 1.

Note that if, for some value of f(nt), the substrategy eventually reaches a state
other than (1b), (2b), or (3c), then we proceed to the next stage, after satisfying
the requirement. Also, as we saw above, if we only arrive at (2b) or (3c) for some
value of f(nt), we also satisfy the requirement and proceed to the next stage. The
only remaining case is when we arrive at (1b) no matter how we choose the value of
f(nt). It is necessary to describe the action at (1b) after the round has progressed.

Case (1b): After the round has progressed, the computation may be asking for the
value of f(nt). At this time, there are two different possibilities in the Case (1b).

(4a) The value of Φj [g⊕h](nt) does not depend on whether f(nt) = 0 or f(nt) =
1.

(4b) The value of Φj [g ⊕ h](nt) depends on whether f(nt) = 0 or f(nt) = 1.

Case (4a): In this case, one can choose the value of f(nt) so that f(nt) ̸= Φe[g ⊕
h](nt). Put Is+1 = {x ∈ Is : x > nt}, and proceed to stage s+ 1.

Case (4b): In this case, start running the (t+ 1)st substrategy.

Let us analyze the situation when (4b) occurs. First, note that the behavior of
each substrategy does not depend on the behavior of the other substrategies. In
other words, since the behavior of the tth substrategy depends only on the values of
f ↾ n0 and f(nt), in fact, one can operate all substrategies in parallel. Furthermore,
if (4b) occurs, then the computation Φj [g ⊕ h](nt) only makes queries n ∈ dom(f)
with n < n0 or n = nt. Now, for each i < 2, let fi be an extension of f ↾ n0 such
that fi(nt) = i. Dependently, the values of g and h also change, so that ĝi = Φe[fi]

and ĥi = Φk[fi].
Note that (4b) occurs because the solution of a query differs somewhere in the Φj-

computations for f(nt) = 0 and for f(nt) = 1. That is, for the queries m0,m1, . . .

during the computation of Φj [ĝ0 ⊕ ĥ0](nt) and the queries m′
0,m

′
1, . . . during the

computation of Φj [ĝ1⊕ĥ1](nt), since we are running the same computation Φj , these
queries must be the same until the very first difference on the solutions occurs.

THE SUBTURING DEGREES 21

That is, there exists some k(t) such that mi = m′
i for each i ≤ k(t), but the

solutions for mk(t) = m′
k(t) are different. For instance, if this is a query to g,

then ĝ0(mk(t)) ̸= ĝ1(m
′
k(t)). Let us now define m̃t := mk(t). The point is that if

ĝ = Φe[f] and ĥ = Φk[f], then one can recover the value of f(nt) from the value

of ĝ(m̃t) or ĥ(m̃t). Moreover, even if g ⊆ ĝ and h ⊆ ĥ, if Φj [g ⊕ h](nt) ↓ then the
same computation is performed without accessing outside the domains of g and h,
so one can recover the value of f(nt) from the value of g(m̃t) or h(m̃t) in the same
way. This is the case, for example, when nt ∈ dom(f) and f ≤subT g ⊕ h via j.

Infinite substages: Recall that, if a substrategy does not reach (4b) for some value
of f(nt), then we proceed to the next stage. Therefore, the process to proceed to
the next stage is not yet described if all substrategies t reach (4b) for any value of
f(nt). Also, a new substrategy is activated only when it reaches (4b). Note that
no action is taken at this point.

If each substrategy t reaches (4b), then we can use the information on the finite
function f ↾ n0 to compute the sequences of queries m0,m1, . . . and m′

0,m
′
1, . . . ,

and eventually find a query m̃t such that ĝ0(m̃t) ̸= ĝ1(m̃t) or ĥ0(m̃t) ̸= ĥ1(m̃t).
This procedure t 7→ m̃t is computable using only f ↾ n0. Furthermore, for ĝ = Φe[f]

and ĥ = Φk[f], the value of f(nt) is determined from ĝ(m̃t) or ĥ(m̃t). Let Js ⊆ Is
be the set of locations nt such that m̃t is a query to the g-side and ĝ0(m̃t) ̸= ĝ1(m̃t).
If Js is infinite, put Is+1 = Js, otherwise Is+1 = Is \ Js. We then proceed to stage
s+ 1.

Verification: The requirement Pe clearly ensures that f is not computable. Suppose
now that g, h ≤subT f and f ≤subT g ⊕ h. Then g ⊆ Φe[f], h ⊆ Φk[f] and
f ⊆ Φj [g ⊕ h] for some e, k, j ∈ ω. If some substrategy of the Re,k,j-strategy
does not arrive at (4b), then f ̸⊆ Φj [g ⊕ h] is guaranteed as discussed above, so
all substrategies will always arrive at (4b). Let s = 2⟨e, k, j⟩ + 1 and consider
n0 = min Is. By the construction of f , for any n ∈ dom(f), n ≥ n0 implies
n ∈ Is+1. For any nt ∈ Is+1, one can compute m̃t using information on the finite
function f ↾ n0. As noted above, if nt ∈ dom(f), then by our assumption that
f ≤subT g ⊕ h via j, the value of f(nt) can be computed from g(m̃t) or h(m̃t). If
nt ∈ Js, then the former, and if nt ̸∈ Js, then the latter. Thus, we obtain f ≤subT g
if Is+1 = Js and f ≤subT h if Is+1 = Is \ Js. □

When translated into the context of realizability theory using Fact 1, this result
means that there is a realizable subtopos of the effective topos that cannot be
decomposed into two smaller realizability subtoposes (with respect to the ordering
by geometric inclusions).

Acknowledgement. The authors wish to thank David Belanger for valuable dis-
cussions. Kihara was supported by JSPS KAKENHI (Grant Numbers 21H03392,
22K03401 and 23H03346). Ng was supported by the Ministry of Education, Singa-
pore, under its Academic Research Fund Tier 2 (MOE-T2EP20222-0018).

References

[1] Nathanael L. Ackerman, Cameron E. Freer, and Robert S. Lubarsky. An introduction to
feedback Turing computability. J. Logic Comput., 30(1):27–60, 2020.

[2] Michael Beeson. Goodman’s theorem and beyond. Pacific J. Math., 84(1):1–16, 1979.
[3] S. Barry Cooper. Computability Theory. Chapman & Hall/CRC, Boca Raton, FL, 2004.

22 TAKAYUKI KIHARA AND KENG MENG NG

[4] Eric Faber and Jaap van Oosten. More on geometric morphisms between realizability toposes.

Theory Appl. Categ., 29:874–895, 2014.
[5] Nicolas D. Goodman. Relativized realizability in intuitionistic arithmetic of all finite types.

J. Symbolic Logic, 43(1):23–44, 1978.
[6] Takayuki Kihara. Rethinking the notion of oracle: a prequel to Lawvere-Tierney topologies

for computability theorists. arXiv:2202.00188, 2022.
[7] Takayuki Kihara. Lawvere-Tierney topologies for computability theorists. Trans. Amer.

Math. Soc. Ser. B, 10:48–85, 2023.
[8] Takayuki Kihara and Keng Meng Ng. Church’s thesis in subtoposes of the effective topos. in

preparation, 2024.
[9] David Madore. Various notions of Turing reduction for partial functions.

https://mathoverflow.net/questions/112617/various-notions-of-turing-reduction-for-partial-
functions.

[10] Piergiorgio Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1989. The theory
of functions and sets of natural numbers, With a foreword by G. E. Sacks.

[11] Leonard P. Sasso, Jr. A survey of partial degree. J. Symbolic Logic, 40:130–140, 1975.

[12] Benno van den Berg and Lotte van Slooten. Arithmetical conservation results. Indag. Math.
(N.S.), 29(1):260–275, 2018.

[13] Jaap van Oosten. A semantical proof of de Jongh’s theorem. Arch. Math. Logic, 31(2):105–

114, 1991.
[14] Jaap van Oosten. A combinatory algebra for sequential functionals of finite type. In Models

and computability (Leeds, 1997), volume 259 of London Math. Soc. Lecture Note Ser., pages
389–405. Cambridge Univ. Press, Cambridge, 1999.

[15] Jaap van Oosten. A general form of relative recursion. Notre Dame J. Formal Logic,
47(3):311–318, 2006.

[16] Jaap van Oosten. Realizability: an introduction to its categorical side, volume 152 of Studies
in Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2008.

